

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Adding Titanium Oxide Nanoparticles on Some Physical Properties of a Ternary Tin-Antimony-Indium solder alloy

A Thesis Submitted to Ain Shams University in Partial Fulfilment for The Degree of Master of Science (M.Sc.) in Physics

By

Amal Emad Eldin Abd Elaal Ahmed

(B.Sc. in Physics & Computer Science), 2012, Faculty of Women for Arts, Science and Education, Ain Shams University

Supervised By

Prof. Dr. Gamila Al-Ganainy

Professor of Solid-State Physics, Physics Department, Faculty of Science, Ain Shams University

Prof. Dr. Adel Fawzy

Professor of Solid-State Physics, Physics Department, Faculty of Education, Ain Shams University

Prof. Dr. Lobna Aly Abd Elwahab

Professor of Solid-State, Solid State Physics and Accelerators Department, National Center of Radiation Research & Technology, Atomic Energy, Cairo

> Ain Shams University Faculty of Science Physics Department (2021)

Date / /

Title of the M.Sc. thesis

Effect of adding Titanium Oxide nanoparticles on some physical properties of a ternary Tin-Antimony-Indium solder alloy

Ву

Amal Emad Eldin Abd Elaal Ahmed

Supervision Committee:	Signature
Prof. Dr. Gamila Al-Ganainy Professor of Solid-State Physics	
Physics Department	
Faculty of Science	
Ain Shams university	
Prof. Dr. Adel Fawzy	
Professor of Solid-State Physics	
Physics Department	
Faculty of Education	
Ain Shams university	
Prof. Dr. Lobna Aly Abd Elwahab	
Professor of Solid-State Physics	
Solid State and Accelerators Department	
National Center of Radiation Research & Technology,	Atomic Energy
Cairo	

Title of the M.SC. thesis

Effect of adding Titanium Oxide nanoparticles on some physical properties of a ternary Tin-Antimony-Indium solder alloy

Ву

Amal Emad Eldin Abd Elaal Ahmed

Approved by the Examining Committee:	Signature
Prof. Dr. Gamila Al-Ganainy	
Professor of Solid-State physics	
Physics Department	
Faculty of Science	
Ain Shams university	
Prof. Dr. Mostafa Mohamed Mostafa Hussien	
Professor of Solid-State physics	
Physics Department	
Faculty of Education	
Ain Shams university	
Prof. Dr. Abd Elrahman Abdullah Awad Allah Eldaly	
Professor of Solid-State physics	
Physics Department	
Faculty of Science	
Zagazig university	

Effect of adding Titanium Oxide nanoparticles on some physical properties of a ternary Tin-Antimony-Indium solder alloy

Student Name: Amal Emad Eldin Abd Elaal Ahmed

Scientific degree: M. Sc.

Department: Physics

Faculty: Science

University: Ain Shams University

Date of graduate: 2012

Date of Registration: 13/2/2017

Grant Date: 2021

Acknowledgement

First and foremost, thank and blessing to Allah bestowed upon me in finishing the thesis.

Besides, I would like to express all my thanks to my advisor **Prof. Or. Gamila Al-Ganainy** for suggesting the research point, her patience throughout the research work, supporting me and her wide range of experience in material science.

Also, I wish to express my deepest gratitude and thanks to prof. Or. Adel Fawzy Ibrahim for his advices and helpful guidance throughout the experimental part of the thesis, giving me positive energy to continue writing the thesis and his valuable comments.

Sincere thanks to Prof. Dr. Lobna Aly Abd for helping, encouragement me, her creative discussion and giving me the opportunity to access the laboratory.

My thankfulness is also to **Dr. Maha** (physics Department, Faculty of Education, Ain Shams University) for her advices and help in experimental work.

My appreciation also extends to my colleagues in metal physics laboratory **Nada** and **Asmaa**, for helping me and encourage me.

Special thanks to my father Emad, my mother Azza, my brothers Ahmed and Adham and my husband Mostafa always encouraging for higher studies, supporting me for writhing the thesis and move on towards and encouragement throughout my

years of study. This accomplishment would not have been possible without them. Thank you. Thank you all Amal Emad Eldin

Dedication

I would like to dedicate this thesis to my beloved mother, my father, my brothers and my husband

Contents

		Page
	Acknowledgement	
	List of Figures	i
	List of Tables	vii
	List of Equations	viii
	Abstract	ix
	<u>CHAPTER I</u>	
	Introduction	
1.1.	Soldering Materials	1
1.2.	Lead Free Solder Alloys	3
1.3.	Tin and its alloys	4
1.4.	Sn-Sb based solder alloys	6
4 -		6
1.5.	Effect of adding elements to Sn-Sb solder alloys	8
1.5.1.	Effect of adding Cu to Sn-Sb solder alloys	8
1.5.2.	Effect of adding Ag to Sn-Sb solder alloys	9
1.5.3.	Effect of adding Au to Sn-Sb solder alloys	9
1.5.4.	Effect of adding In to Sn-Sb solder alloys	10

		Page
1.6.	Nano-Composite Solders	10
1.7.	TiO ₂ Nanoparticles	11
1.8.	Literature Review	12
1.9.	Aim of the Present Work	20
	<u>CHAPTER II</u>	
	Theoretical Background	
2.1.	imperfection in crystalline solids	21
2.1.1.	Point defects	21
2.1.2.	Line defects "dislocations"	22
2.1.3.	Surface "planar" defects	23
2.1.4.	Volume defects	24
2.2.	Elastic properties of dislocations	24
2.3.	Dislocation motion	25
2.4.	Dislocation interactions	25
2.5.	Multiplication of dislocations	26
2.6.	Work-hardening of metals and alloys	26
2.7.	Mechanisms of work-hardening	28
2.7.1.	Strain-hardening	28

		Page
2.7.2.	Matrix strengthening (solid solution strengthening)	28
2.7.3.	Grain boundary hardening	29
2.7.4.	Grain size effect	29
2.7.5.	Anneal hardening	29
2.7.6.	Precipitation or dispersion strengthening	30
2.8.	Mechanical properties of solder materials	30
2.8.1.	Tensile Properties	31
2.8.1.1.	Stress-Strain Curve	31
(a)	Elastic Modulus (Young's Modulus) (E)	33
(b)	Yield Strength (σ _y)	33
(c)	The Ultimate Tensile Strength (UTS)	34
(d)	Ductility	35
2.8.1.2.	Factors Affecting Flow Stress	36
(a)	Effect of Strain Rate	36
(b)	Effect of Temperature	37
(c)	Effect of Grain Size	38
2.8.2.	Indentation creep	39
2.8.2.1.	Vickers Hardness Test	39
2.8.2.2.	Indentation creep characteristics	40
2.8.2.3.	Indentation Creep Curve	40

CHAPTER III

Experimental Techniques

3.1.	Sample preparation	42
3.2.	Heat Treatment	43
3.3.	Differential Scanning Calorimeter Technique	43
3.4.	X – Ray Diffraction Analysis (XRD)	46
3.5.	Optical Microscope (OM)	47
3.6.	Scanning Electron Microscope (SEM)	49
3.7.	The energy dispersive X-ray spectroscopy (EDS or EDX)	50
3.8.	The Mechanical System and Measurement Technique	51
3.8.1.	Tensile-Testing Machine	51
3.8.2.	Indentation creep measurements	55

CHAPTER IIII

Experimental Results and Discussion

4.1.	Thermal Analysis and Microstructure Evolutions of both the Plain Solder SSI and SSI – 0.22wt% Nano-Sized TiO ₂ Composite Solder	59
4.1.1.	Thermal Analysis	59
4.1.1.1.	Melting Behavior	59
4.1.1.2.	Pasty Range	62
4.1.1.3.	Undercooling Range (ΔT)	62
4.1.2.	Microstructure Analysis	63
4.1.2.1.	X-Ray Diffraction Pattern	63
4.1.2.2.	Optical Microscope	65
4.1.2.3.	Scanning Electron Microscope	65
4.2.	Tensile Stress-strain characteristics of both the ordinary Solder SSI and SSI – 0.22 wt% Nano-Sized Tio ₂ Composite Solder	68
4.2.1.	Effect of Strain Rate and Testing Temperature on the Stress-Strain Characteristics of SSI52 Plain and SSI52 Composite Solder Alloys	68
4.2.2.	Effect of strain rate on the mechanical properties of solders	72
4.2.3.	Effect of temperature on the mechanical properties of solders	74