

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Molecular characterization of some immunity genes related to endometritis in Egyptian buffalo

A Thesis Submitted for the award of Ph.D. degree of Science in Zoology

By

Dalia Ahmed Abdul Kader Ali Taha

(B.Sc. Zoology - M.Sc. Zoology)

Assistant Researcher

Cell Biology Department- Genetic Engineering and Biotechnology Division

National Research Centre

Supervised by

Prof. Dr. Nagwa Hassan Ali Hassan

Professor of Cytogenetics Zoology Department - Faculty of Science Ain Shams University

Prof. Dr. Othman El-Mahdy Sayed Othman

Professor of Molecular Genetics and Biotechnology Cell Biology Department - Genetic Engineering and Biotechnology Division National Research Centre

Prof. Dr. Eman Roshdy Mahfouz

Professor of Molecular Genetics and Biotechnology Cell Biology Department - Genetic Engineering and Biotechnology Division National Research Centre

> Faculty of Science Ain Shams University 2021

﴿بِسُمِ اللّهِ الرَّحْمنِ الرَّحِيمِ﴾

قَالُواْ سُبْحَانَكَ لا عِلْمَ لَنَا إِلاَ مَا عَلَمْتَنَا إِنَكَ أَنتَ الْعَلِيمُ الْحَكِيمِ

﴿صدق الله العظيم﴾

سورة البقرة (٣٢)

Approval Sheet

Student Name: Dalia Ahmed Abdel Kader Ali Taha

Thesis Title: "Molecular characterization of some immunity

genes related to endometritis in Egyptian buffalo"

Degree: Ph.D. of science in Zoology

Supervisors Committee

1	Prof. Dr. Nagwa Hassan	Professor of Cytogenetics
	Ali Hassan	Zoology Department - Faculty of
		Science- Ain Shams University
2	Prof. Dr. Othman El-	Professor of Molecular Genetics and
	Mahdy Sayed Othman	Biotechnology- Cell Biology Department-
		National Research Centre
3	Prof. Dr. Eman Roshdy	Professor of Molecular Genetics and
	Mahfouz	Biotechnology- Cell Biology Department-
		National Research Centre

Approval Committee

	ipprovar committee			
1	Prof. Dr. Sobhy El-Sayed	Professor of Genetics & Molecular Biology		
	Hassab El-Nabi	-Faculty of Science –		
		Menoufiya University		
2	Prof. Dr. Nadia Hussien	Professor of cytogenetics & Molecular		
	Mohamed sayed	genetics- Faculty of Girls –		
		Ain shams University		
3	Prof. Dr. Nagwa Hassan	Professor of Cytogenetics Zoology		
	Ali Hassan	Department - Faculty of Science-		
		Ain Shams University		
4	Prof. Dr. Othman El-	Professor of Molecular Genetics and		
	Mahdy Sayed Othman	Biotechnology- Cell Biology		
		Department- National Research Centre		

Thesis decision 28 /8/ 2021

Approval Stamp

Thesis Approved date / /2021

Faculty council approval

University council approval

ACKNOWLEDGMENT

First and for most, I feel indebted to ALLAH, most graceful, who gave me the strength to complete this work and helping me in all my life.

I would like to express my deepest gratitude and thankful to, *Prof. Dr. Nagwa Hassan Ali Hassan*, Professor of Cytogenetics, Zoology Department, Faculty of Science, Ain Shams University, for her valuable help, guidance, generous support, encouragement and continuous supervision. It's been very pleasant to work with her.

Words are few to express my deepest gratitude and appreciation to *Prof. Dr. Othman El-Mahdy Sayed Othman*, Professor of Molecular Genetics and Biotechnology, Cell Biology Department, National Research Centre, for his continuous encouragement, and close supervision throughout this work and for his precious time and valuable advice and effort that made this work possible. I was lucky to work with him.

My profound gratitude and deepest thanks are to Prof. Dr. Eman Roshdy Mahfouz, Professor of Animal Genetics, Cell Biology Department, National Research Centre for her guidance, kind supervision, valuable advices, time, encouragement and patient throughout my research work.

I would like to express my deep appreciation and gratitude to my Interior supervisor at National Research Center Prof. Dr. Mona Ahmed Bibars; Professor of Animal Genetics, Cell Biology Department, National Research Centre; for her encouragement, continuous advice, infinite patience and her keen supervision.

My appreciation is extended to my colleagues in the National Research Centre for their distinguished help and support.

Last but not least, I would like to express my endless gratitude to All My Family for their great encouragement and support.

DEDICATION

Words can not express how grateful I am to my dear **Family** thank you for your endless love and support throughout my life.

My dearest **Parents** for all sacrifices that you've made on my behalf. My loving Dad **Ahmed**, for encourage me, inspiration and wisdom. To my amazing Mom **Eman**, for raising me to be successful, independent and strong.

My heart felt regard goes to my **Parents-in-law**, for their love, help and moral support.

To my beloved partner and friend my Husband *Mostafa*, for his continued and unfailing love, for always being there, believe in me and support me to reach my goals. I can't thank you enough for encouraging me throughout this experience.

My handsome Sons **Mazen** & **Ahmed**, I would like to express my thanks for being such good boys always cheering me up and helping me. I am so grateful to Allah to have both of you.

To my precious, sister **Nancy** & brother **Mohamed**, for their selfless love, caring, standing beside me and support me for everything. Also, my thanks to my sister in-law, **Aliaa** & brothers-in-law, **Khaled** & **Omran**, for their kind help, support and constant love.

List of Contents

Contents	Page
List of Abbreviation	
List of Figures	
List of Tables	V
Abstract	vi
Introduction	1
Aim of Work	4
CHAPTER1: REVIEW OF LITERATURE	5
1.1. Water buffalo	5
1.2. Buffalo in Egypt	8
1.3. Endometritis in Buffalo	11
1.3.1. Diagnosis of endometritis in buffalo	13
1.4. Buffalo immune system	15
1.5. Gene Expression	17
1.5.1. Real-time polymerase chain reaction (RT-PCR)	18
1.5.2. Analysis of Real Time PCR Ct Values	21
1.6. Expression of immunity genes related to buffalo endometritis	
1.6.1. Interleukin-1 alpha (<i>IL-1α</i>) gene	25
1.6.2. Interleukin-1 beta (<i>IL-1β</i>) gene	25
1.6.3. Interleukin-6 (<i>IL-6</i>) gene	26
1.6.4. Interleukin-10 (<i>IL-10</i>) gene	27
1.6.5. Tumor necrosis factor alpha (<i>TNF</i> -α) gene	27
1.6.6. Transforming growth factor beta $(TGF-\beta)$	28
gene	

1.6.7. Chemokine CXC ligand 5 (CXCL5)	
1.6.8. Haptoglobin (HP) gene	29
1.6.9. Prostaglandin E2 receptors (<i>PTGER2</i> and <i>PTGER4</i>)	30
CHAPTER 2: MATERIALS & METHODS	
2.1. Materials	32
2.1.1. Kits	32
2.1.2. Instruments	32
2.2. Methods	33
2.2.1. Collection of samples	33
2.2.2. Bacterial identification	33
2.2.3. RNA extraction	33
2.2.4. RNA concentration and purity measures	35
2.2.5. cDNA synthesis	35
2.2.6. Primers used	36
2.2.7. Real-Time quantitative polymerase chain reaction (RT-qPCR)	39
2.2.8. Statistical data analysis	40
CHAPTER 3: RESULTS	41
3.1. Bacteriological examination of uterine samples	41
3.2. RNA isolation from uteri samples	42
3.3. cDNA synthesis	44
3.4. Gene expression analysis	45
3.4.1. Glyceraldehyde 3-phosphate dehydrogenase (<i>GAPDH</i>) gene	47
3.4.2. Interleukin-1 alpha (<i>IL-1α</i>) gene	49
3.4.3. Interleukin-1 beta (<i>IL-1β</i>) gene	52
3.4.4. Interleukin-6 (<i>IL-6</i>) gene	55

CONTENTS

3.4.5. Interleukin-10 (<i>IL-10</i>) gene	58
3.4.6. Tumor necrosis factor alpha (<i>TNF</i> -α) gene	61
3.4.7. Transforming growth factor beta receptor 1 (<i>TGFBR1</i>) gene	64
3.4.8. Haptoglobin (HP) gene	67
3.4.9. Chemokine CXC ligand 5 (CXCL5) gene	70
3.4.10. Prostaglandin E2 receptors (<i>PTGER2</i>) gene	73
3.4.11. Prostaglandin E4 receptors (<i>PTGER4</i>) gene	76
CHAPTER 4: DISCUSSION	
SUMMARY	100
CONCLUSION	103
CHAPTER 5: REFERENCES	104
Arabic Summary	٣
Arabic Abstract	١

LIST OF ABBREVIATION

APPs Acute phase proteins
BLV Bovine leukemia virus

Bp Base pair

CD4+ Cluster of differentiation 4 cDNA Complementary DNA

Ct Cycle threshold

ΔCtDelta cycle thresholdCXCL5Chemokine CXC ligand 5DEPCDiethyl pyrocarbonate

E. Coli Escherichia coli

ELISA Enzyme-linked immunosorbent assay

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

gene

HKG House-Keeping gene
HP Haptoglobin gene
IFN Interferon gene
IL-1 Interleukin-1 gene
IL-10 Interleukin-10 gene

 $IL-1\alpha$ Interleukin-1 Alpha gene $IL-1\beta$ Interleukin-1 beta geneIL-6Interleukin-6 geneLPSlipopolysaccharide

M. avium subsp mRNA Mycobacterium avium subspecies Messenger ribonucleic acid

NCBI National Center for Biotechnology

Information

PBMC Peripheral blood mononuclear cell

PCR Polymerase chain reaction

pp Postpartum

PTGER Prostaglandin E receptors

PTGS2 Prostaglandin-endoperoxide synthase 2

qPCR Quantitative PCR

qRT-PCR Quantitative Reverse transcription

polymerase chain reaction

RNA Ribonucleic acid

rRNA Ribosomal ribonucleic acid

SAA Serum amyloid A

SCE Subclinical endometritis

 $TGF-\beta$ Transforming growth factor beta gene

TNF-α Tumour necrosis factor alpha
 TRAF1 TNF receptor-associated factor 1
 VSV Vesicular stomatitis virus infection

 β -actin Beta-actin gene

List of Figures

Fig.	Title	Page
1	Gene expression steps using real-time PCR.	19
		\
_	The PCR amplification curve's phases. At each	2.1
2	reaction cycle, the PCR amplification curve	21
	shows the accumulation of fluorescent	
	fluorescence.	
	RNA extracted from buffalo uteri shows 28S	
3	and 18S rRNA bands indicating the integrity of	42
	extracted RNA.	
	The electrophoresis of synthesized cDNA on	45
4	EtBr-stained agarose gel.	
	No. of fold change in $IL-1\alpha$ gene expression	51
5	between healthy and infected animals.	
	No. of fold change in $IL-1\beta$ gene expression	54
6	between infected and healthy animals	
	No. of fold change in <i>IL-6</i> gene expression	57
7	between infected and healthy animals	
	No. of fold change in <i>IL-10</i> gene expression	60
8	between healthy and infected animals.	
	No. of fold change in $TNF-\alpha$ gene expression	63
9	between healthy and infected animals	
	No. of fold change in TGFBR1 gene expression	66
10	between healthy and infected animals.	