

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

CXCL13 Level in Children with Acute and Relapsing Demyelinating Disorders of the Nervous system

Thesis
Submitted for Fulfillment of Master Degree
in Pediatrics

By Habib Lahzi Habib

M.B.B.Ch. Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Iman Ali Elagouza

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Dr. Dina Ahmed Soliman

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Raghda Mohamed Hesham Zaitoun

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Iman Ali Elagouza**, Professor of Pediatrics, Neurology Unit, Children's Hospital, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dina Ahmed**Soliman Professor of Clinical Pathology, Faculty of
Medicine, Ain Shams University, for her meticulous
supervision, kind guidance, valuable instructions and
generous help.

I am deeply thankful to Dr. Raghda Mohamed Hesham Zaitoun, Lecturer of Pediatrics, Pediatric Neurology Unit, Children's Hospital, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Habib Lahzi Habib

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature:	
Acquired Demyelinating Disorders of Central N	Nervous System5
CXCL13	95
Role of CXCL13 in Immune Central Nervous S	System Disorder 112
Patients and Methods	122
Results	131
Discussion	155
Summary	172
Conclusion	177
Recommendations	178
References	179
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Diagnostic criteria for multiple sclerosis	17
Table (2):	MS differential diagnosis	
Table (3):	NMOSD diagnostic criteria.	
Table (4):	Diagnostic criteria of acute disser- encephalomyelitis (ADEM) in children	45
Table (5):	Clinical clues in the recognition of particula of autoimmune encephalitis	58
Table (6):	Brighton criteria for case definition of Guillain-Barré	
Table (7):	Socio-demographic features of enrolled parti (both cases and controls)	cipants 132
Table (8):	Clinical characteristics of cases.	
Table (9):	Positive Clinical characteristics among case different diagnoses	
Table (10):	Radiological investigations ordered for cases	136
Table (11):	EEG findings in cases	137
Table (12):	Additional investigations ordered for cases	138
Table (13):	Radiological and neurophysiological abnorming all pages	
Table (14).	in all cases	
, ,	Results of Lab investigations ordered for cases (co Serum and CSF CXCL13 levels in patient	
Table (15):	different diagnoses	
Table (16)	Lab parameters in patients with different diagr	
	Residual deficits observed among cases at 3	
14610 (17)	post hospital discharge	
Table (18):	Comparison of serum CXCL13 level in cases and	
	Serum CXCL13, CSF CXCL13 and or	ther CSF
	parameters in patients with and without encep	± •
Table (20):	Relation between serum CXCL13 level and d clinical and lab characteristics of the studied p	
Table (21):	Relation between CSF CXCL13 and d clinical and lab characteristics of the studied p	
Table (22):	Correlation between serum CXCL13 level ar CXCL13 level, age, CSF glucose, CSF prote	nd CSF ins and
	IgG index	159

List of Figures

Fig. No.	Title	Page No.
Figure (1):	MRI Characteristics of MS, NMOSD, and Ab associated disease	
Figure (2):	Dorsal medulla, area postrema, and brainstem lesions in neuromyelitis optica sp disorders	pectrum
Figure (3):	Acute hemorrhagic leukoencephalitis: M neuropathology findings; Representative as weighted (A), noncontrast T1-weighte postcontrast T1-weighted (C), and fast attenuated inversion recovery (FLAIR) (D-IMRI scans three days after neurologic syonset	kial T2- d (B), fluid- F) 1.5-T ymptom
Figure (4):	MRI brain of acute disseminated encept (ADEM)	
Figure (5):	Magnetic resonance imaging of 51-y woman with Guillain-Barré syndrome	
Figure (6):	Activation of signaling pathways by CXC chemokine CXCL13 binds specifically to CXCR5	the GPCR
Figure (7):	Primary microglia produce CXCL13 in respectation stimuli in vitro, and production depthe endoplasmic reticulum protein, UNC93	ends on
Figure (8):	Primary microglia from IRF7 KO mice more CXCL13 that WT cells, and product KO cells is suppressed by exogenous type-la dose dependent manner	tion by I IFN in
Figure (9):	Diagnosis within cases	133
Figure (10):	Type of neurological deficits seen in our cases	
Figure (11):	MRI brain of 4.6 years old female patie ANEC	
Figure (12):	MRI spine of 14 years old male with acute tramyelitis144	ansverse

List of Figures (cont...)

Fig. No.	Title Page 1	No.
Figure (13)	Bilateral asymmetrical cerebellar demyelinating plaques in a child with ADEM	145
Figure (14):	MRI brain (T2 sequence) in a child with ADEM	146
Figure (15):	Number of treatment lines needed by cases	152
Figure (16):	Residual deficits observed among cases at 3 months post hospital discharge	153

List of Abbreviations

Abb.	Full term
ADEM	Acute disseminated encephalomyelitis
	Autoimmune encephalitis
	Albumin cytological dissociation
<i>ANEC</i>	Acute necrotizing encephalopathy of childhood
<i>AIDP</i>	Acute inflammatory demyelinating polyneuropathy
<i>AMAN</i>	Acute motor axonal neuropathy
<i>AMPAR</i>	A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
AMSAN	Acute sensorimotor axonal neuropathy
<i>APC</i>	Antigen presenting cells
	Blood brain barrier
BCA -1	B cell-attracting chemokine 1
BLR1	Burkitt's lymphoma receptor 1
<i>CBC</i>	Complete blood count
<i>CIDP</i>	Chronic inflammatory demyelinating
	polyradiculoneuropathy
	Cytomegalovirus
	Central nervous system
	Cerebrospinal fluid
	Computed tomography
	C-X-C motif ligand 13
	Dendritic cells
Diag	
	Diffusion-weighted imaging
	Experimental autoimmune encephalomyelitis
	Electroencephalography
	Electromyography
	Extracellular Signal-Regulated Kinase
<i>F</i>	
<i>FDC</i>	
	Gamma-aminobutyric acid-B receptor
	Glutamic acid decarboxylase 65
	Guillain-Barré syndrome
	Germinal centers
GlyR	Glycine receptor

List of Abbreviations (Cont...)

Abb.	Full term
<i>GPCRs</i>	G protein-coupled receptors
HIV	Human immunodeficiency virus
	Highly significant
<i>IVIG</i>	Intravenous immunoglobulin
<i>IVPMP</i>	Intravenous pulse methylprednisolone
<i>LETM</i>	Longitudinally extensive transverse myelitis
<i>LP.</i>	Lumbar puncture
<i>M</i>	Male
<i>MAPK</i>	Mitogen-activated protein kinase
<i>MFS</i>	Miller fisher syndrome
<i>MOG-Ab</i>	Myelin oligodendrocyte glycoprotein antibody associated disease
MRI	Magnetic resonance imaging
	Multiple sclerosis
	Mechanical ventilation
<i>N</i>	
	Neuroborreliosis
	National institute of neurological disorders and stroke
NMDAR	N-methyle-D-aspartate receptor
	Neuromyelitis optica spectrum disorders
	Non significant
	Nerve conduction velocity
	Optic neuritis
	Primary central nervous system lymphoma
	Plasma exchange
	Significant
	Standard deviation
SIADH	Syndrome of inappropriate antidiuretic hormone secretion
TB	Tuberculosis
	Traumatic brain injury
	Treatment
	Transverse myelitis
	Tumor necrosis factor
	Visual evoked potentia
	World Health Organization

INTRODUCTION

system (CNS) are rare childhood disorders and cause significant physical and cognitive disabilities (*Absoud et al.*, 2011). These disorders are caused by immune-mediated destruction of the white matter of brain, optic nerve, and spinal cord (*Gulati et al.*, 2015). Multiple sclerosis (MS), optic neuritis (ON), transverse myelitis (TM), clinically isolated syndrome (CIS), Devic disease, and acute disseminated encephalomyelitis (ADEM) are collectively known as acquired demyelinating syndromes (*Longer-Gould et al.*, 2011).

Guillain-Barre syndrome is an immune-mediated inflammatory demyelinating disease of the peripheral nervous system. It is the most common cause of acute paralytic neuropathy (*Esposito and Longo*, 2017; Sejvar et al., 2011; Sladky, 2004 and Jones, 2000).

CNS autoimmune encephalitis, characterized by the presence of antibodies binding to brain receptors, ion channels, and related proteins (*Vincent et al.*, 2011 and Leypoldt et al., 2015) is now also increasingly recognized in children (*Armangue et al.*, 2012 and Wong-Kisiel et al., 2012).

Many of these disorders manifest most commonly in childhood or adolescence, whereas others more typically occur in adults (*Waldman et al.*, 2014 and Graus et al., 2016).

1

Chemokines are a family of small molecular weight proteins known for their ability to act as chemoattractants, thereby functioning to induce the migration of nearby responding cells. These secreted proteins, together with a host of other extracellular mediators, including growth factors and eicosanoids, are key modulators of inflammation by controlling complex interaction networks via autocrine and paracrine mechanisms. Multiple diseases have been associated with aberrant production of chemokines and cytokines, including infectious diseases, chronic inflammation, and autoimmune disorders (von Hundelshausen et al., 2017 and Proost et al., 2017).

They are also involved in the expression of adhesion molecules, cytokine secretion, phagocytosis, matrix metalloproteinases release, T-cell activation and differentiation, neuronal development, synaptic transmission, angiogenesis and apoptosis. In multiple sclerosis, chemokines together with adhesion molecules, may facilitate the passage of autoreactive T cells and macrophages through the blood-brain barrier, and mediate movement of inflammatory cells to lesion sites in the CNS (Cheng and Chen, 2014).

The C-X-C motif chemokine ligand 13 (CXCL13) is a chemokine produced by antigen-presenting cells such as follicular dendritic cells and macrophages. Via its receptor— CXCR5—it serves as a chemoattractant, homing B cells into secondary lymphoid organs (Van Burgel et al., 2011 and Klimatchheva et al., 2015).

CXCL13 has been shown as an essential chemokine in the recruitment of B cells into the CNS in various neuroinflammatory conditions such as MS and viral and bacterial infections, as well as in malignant, autoimmune, and chronic inflammatory diseases (Fujimori et al., 2014; Schmidt et al., 2011 and Khadmi et al., 2011).

Cerebrospinal fluid (CSF) CXCL13 was suggested to be a diagnostic marker highly specific and sensitive neuroborreliosis (Senel et al., 2010 and Schmidt et al., 2011), but is also raised in other neuroinfectious and inflammatory disorders (Kother et al., 2016 and Alvarez et al., 2013). Recently, an increasing focus has been on CXCL13 as a potential therapeutic target in these diseases (Huber and Irani, 2015).

CXCL13 is found in human blood, plasma and serum and high CXCL13 levels have been associated with primary Sjögren's syndrome and systemic lupus erytheromatoses (Fava et al., 2011; Nocturne et al., 2015 and Fang et al., 2017).