سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

STUDIES FOR IMPROVING YIELD POTENTIAL OF SOME SESAME GENOTYPES

BY

DALIA MOHAMED NABIL KHATTAB B. Sc. (AGRONOMY) 1995

Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

IN Agronomy

Agronomy Department Faculty of Agriculture Cairo University

B

(2001)

\O \V _

APPROVAL SHEET

TITLE OF THESIS: Studies for improving yield potential

of some sesame genotypes.

NAME OF STUDENT: Dalia Mohamed Nabil Khattab

DEGREE: M.Sc **Approved by:**

Prof. Dr. Abdel-Aziz Nasr Sharaan

Prof. of Agronomy, Fac. of Agric., El Fayoum,

Cairo University

Prof. Dr. Abdel-Aziz A. Kandil Prof. of Agronomy, Fac. of Agric., Giza, Cairo University Kardif...

Dr. Adel A. HobAllah

Associate Prof. of Crop Breeding,
Agronomy Dept., Fac. of Agric., Giza, Cairo University.

Dr. Saied Abdel Rahman El Shrief Associate Prof. of Crop Breeding,

Agronomy Dept., Fac. of Agric., Giza, Cairo University

Committee in charge

Date: 24 / 4 / 2001

STUDIES FOR IMPROVING YIELD POTENTIAL OF SOME SESAME GENOTYPES

BY

DALIA MOHAMED NABIL KHATTAB

UNDER SUPERVISION OF:

Dr.: Abdel-Aziz A. KandilProf. of Agronomy, Fac. of Agric.,
Cairo University

Dr.: Adel A. HobAllah Associate Prof. of Crop Breeding, Agronomy Dept., Fac. of Agric., Cairo University

Dr.: Nabila Mohamed Zaki
Prof. of Agronomy, Dept. Agronomy
National Research Center

Name of candidate: Dalia Mohamed Nabil Khattab

Title of Thesis: Studies for improving yield potential of some sesame genotypes.

Degree: M.Sc

Dr.: Adel A. HobAllah

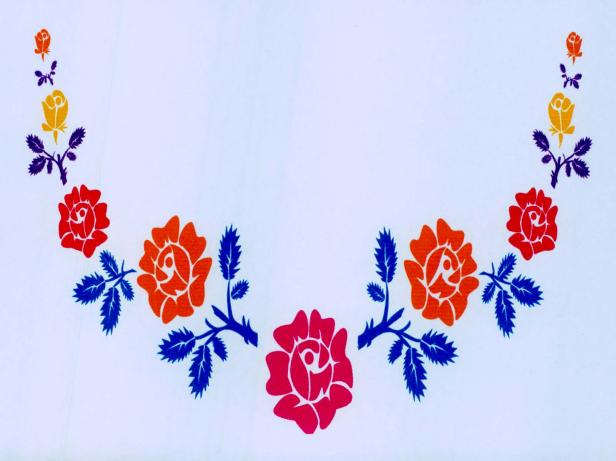
Supervisors:

Prof. Dr.: Abdel-Aziz A. Kandil

Prof. Dr.: Nabila Mohamed Zaki

Department: Agronomy

Branch: Agronomy Approval: 24 / 4 / 2001


ABSTRACT

The present study was carried out to improve the yield potential of some sesame genotypes through application the suitable agronomic practices and use of suitable plant breeding approaches in the crop improvement. The first part of the study aimed to investigate the response of different sesame genotypes to nitrogen fertilization and plant population density in terms of hill spacing in order to maximize seed yield/unit area. In this respect, a spilt - spilt plot design was used where N levels of 30, 45 and 60 Kg N/fad. were applied in the main plots, while sesame genotypes (Mutant48, EUL90 and Giza32) were arranged in the sub plots and hill spacing of 10, 15 and 20cm were distributed in the sub-sub plots. Combined data over two seasons for growth characters and its components showed significant effect for N levels, genotypes and hill spacing as well as their first and second order interactions on most of these characters. In general, combined analysis revealed that highest seed yield per faddan (926.2 Kg) was obtained from Mutant48 when it grown at 15cm hill spacing and received 60 Kg N/fad., however, the economic yield (909.7 Kg) could be obtained from Mutant48 at 20cm hill spacing with 2 plants/hill and adding 45Kg N/fad. For EUL90, greatest seed yield /fad. (808.5 Kg) was recorded when it grown at 15cm between hills and 60Kg N/fad. However, the commercial cultivar Giza32 produced highest seed yield (738.0Kg/fad.) when it sown at hill spacing of 10cm and 60Kg N/fad.

The second part of this study was conducted aiming to generate a new forms of sesame with high yield potential through hybridization and selection. Therefore, a half diallel set of crosses including six parental genotypes were used to investigate heterosis and combining ability in the F₁ generation as well as the nature of gene action controlling seed yield and its contributing characters in both F₁ and F₂ generations. Results showed that the maximum significant true heterosis in desirable direction (47.4%) was recorded for capsules/plant, followed by seed yield/plant (39.2%), fruiting zone length (17.4%) and 1000-seed weight (10.2%). Analysis of variance for combining ability indicated that general (GCA) and specific (SCA) combining ability variances were highly significant for all investigated traits, revealing the presence of both additive and non-additive gene effects involved in the expression of these-traits. General and specific combining ability effects were frequently significant among parents and crosses for the studied traits. Superior parents and crosses were identified for particular characters. Non of the parents appeared to be good general combiner for all traits together. The performance of the crosses was compared on the basis of mean yield, desirable heterosis, SCA effects of hybrids and GCA effects of parents. According to these parameters, four crosses were classified as the best and could be utilized either for development of hybrid sesame or for recovering superior lines in further segregation populations. Estimates of genetic parameters and their ratios indicated that an indirect selection for stem height to first capsule, fruiting zone length, branches and capsules per plant would be help to isolate high yielded genotypes in the segregating populations due to the substantial contribution of additive gene effects and high estimates of narrow sense heritability for such traits in the F2 generations. However, the predominant of non-additive gene effects and low estimates of narrow sense heritability for capsules/plant and seed yield/plant in the F₁ generation, suggesting the possibility exploiting dominance gene effects for improving such traits through heterosis breeding if the male sterile line of sesame become available.

MY MOTHER Dr. SEHAM EL KHAT

ACKNOWLEDGMENT

Firstly, Thanks to God

The writer wishes to express her gratitude and appreciation to Prof. Dr. Abdel- Aziz A. Kandil Professor of Agronomy, Faculty of Agriculture, Cairo University and Dr. Adel A. HobAllah Associate Professor, Agronomy Department, Faculty of Agriculture, Cairo University for their supervision, suggesting the problem planing, help, valuable guidance and scientific advice throughout the study and preparing the manuscript.

Deep gratitudes are forwarded to **Prof. Dr. Nabila M. Zaki,** Prof. of Agronomy, National Research Centre for her supervision, encouragement and help during preparation of the first part of this manuscript.

My deep thanks to late father **Dr. Mohamed Nabil Khattab** and also to my mother, **Dr. Seham El Khiat** and my brother and sister for giving me inspiration, contidence and patience throughout the period of investigation.

I wish to express my deep thanks and indebtedness to my faithful husband and my son **Hosam** for their patience and sincere help in the course of this work.

CONTENTS

INTRODUCTION PART (I)	pages 1
REVIEW OF LITERATURE	3
1. Effect of Nitrogen Fertilization	3
2. Genotypes performance	6
3. Effect of plant spacing	9
4. Interaction effects	11
MATERIALS AND METHODS	13
RESULTS AND DISCUSSION	17
1. Days to 50% flowering	17
2. Days to maturity	20
3. Plant height	24
4. Height to first capsule	28
5. Fruiting zone length	32
6. Number of branches/plant	36
7. Number of capsules/plant	40
8.1000-seed weight	45
9. Seed yield/plant	48
10. Seed yield/faddan	53
SUMMARY	61
PART (II)	
REVIEW OF LITERATURE	68
1. Heterosis	68
2. Combining ability	75
3. Type of gene action and heritability	82
MATERIALS AND METHODS 1. Genetic materials and field levent	87
 Genetic materials and field layout Data recorded 	87
$oldsymbol{\cdot}$	88 88
3. Biometrical analysis3.1. Heterosis	89
3.2. Combining ability	90
3.2.1Combining ability analysis	90
3.2.2Estimates of variances components	91

3.2.3Estimates of GCA and SCA effects		91
3.2.4Estimates of standard error		91
3.3. Type of gene action and heritability		92
3.3.1.	Hayman's approach	92
3.3.2.	Testing the validity of assumptions	92
3.3.3.	Estimates of components of variance	
	and their ratios	93
3.3.4.	Heritability estimates	95
RESUL	TS AND DISCUSSION	96
1. Mean	performance and Heterosis	96
1.1. Days to maturity		97
1.2. Plant height		100
1.3. Stem height to first capsule		103
1.4. Fruiting zone length		104
1.5. Number of fruiting branches/plant		105
1.6. Number of capsules/plant		106
1.7. 100	0-seed weight(seed index)	107
1.8. Seed	d yield/plant	108
2. Combining ability		109
2.1. Ana	lysis of variance for combining ability	_ 110
2.2. Gen	eral combining ability effects	113
	cific combining ability effects	115
3. Type o	f gene action and heritability estimates	121
SUMMARY		129
REFERENCES		136
ARABIC SUMMARY		149

MTRODUCTION

INTRODUCTION

Sesame (Sesamum indicum L.) is an important oilseed crop in the tropics and subtropics, however 99% of its cultivated area are in the developing countries where usually grown by the small holders (Production Year Book, FAO, 1999). Sesame crop has an important advantages because it could be grown under fairly high temperature, low water supply and low levels of other inputs (Weiss, 1983 and Ashri, 1989).

In Egypt, sesame is consider a food crop rather than oilseed crop because most of its seeds consumed directly, without oil extraction, in different purposes such as bakery products, tehena, halawa ...etc.

The cultivated area of sesame in Egypt increased markedly during the last few years. It increased from 30 733 faddan in 1986 to 67000 faddan in 1999 (118%), thus the total seed production increased from 14 885 ton in 1986 to 33000 ton (121.7%) in 1999. However, the productivity per unit area was not increased markedly, it increased from 477 to 497 kg seed/faddan only (4.2%) in the same period (Central Administration of Agricultural Economy, Ministry of Agriculture, Egypt). However, the local production from sesame seed did not satisfy the national requirements, thus about 35000 ton of sesame seed was imported in 1998. (Trade Year book, FAO, 1998).

It is clear that the increase in sesame production during the last years was mainly due to the increase in its growing area in Egypt. This means that intensive research work is needed to increase the productivity of sesame to reduce the imported sesame seeds in the near future aiming to reach to the self-sufficiency later on.