

Cairo University Faculty of Veterinary Medicine

Title

Invetigating the significance of nucleotides dietary fortification in broiler diet to cope with the diffrtrnt stressors

Thesis submitted by

Nader Farouk Kamel Osman

B. Sc. of Veterinary Medicine/ Cairo University (2002)

MVSc. of Veterinary Medical Science (Nutrition and Clinical Nutrition)/ Cairo University (2015)

For the Degree of the (Ph.D.) in

Veterinary Medical Science/ Nutrition and Clinical Nutrition

Under supervision of:

Prof. Dr. Fathy Farouk Mohamed

Professor of Nutrition and Clinical Nutrition

Head of Nutrition and Clinical Nutrition Department and Former Dean

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Maha Mouhamed Hady

Professor of Nutrition and Clinical Nutrition

Department of Nutrition and Clinical Nutrition

Faculty of Veterinary Medicine

Cairo University.

(2020)

.

Cairo University
Faculty of Veterinary Medicine
Department of Nutrition and Clinical Nutrition

Approval sheet

This is to approve that the thesis titled

Invetigating the significance of nucleotides dietary fortification in broiler diet to cope with the diffrtrnt stressors

And presented by

Nader Farouk Kamel Osman

To Cairo University

For the Degree of the (Ph.D.) in

Veterinary Medical Science/ Nutrition and Clinical Nutrition

Has approved by the examining committee:

Prof. Dr. Wafaa Abd- Elhamed El- Eraky

Professor of Nutrition and Clinical Nutrition and Dean of Faculty of Fisheries Sciences Veterinary Medicine - Zagazig University

Prof. Dr. Hossam Ahmed abdel Latif

Professor of Nutrition and Clinical Nutrition Department Faculty of Veterinary Medicine - Cairo University

Prof. Dr. Fathy Farouk Mohamed

Professor of Nutrition and Clinical Nutrition Department and Former Dean Faculty of Veterinary Medicine - Cairo University (supervisor)

16 / 9 / 2020

Cairo University
Faculty of Veterinary Medicine
Department of Nutrition and Clinical Nutrition

Supervision sheet

Prof. Dr. Fathy Farouk Mohamed

Professor of Nutrition and Clinical Nutrition

Head of Nutrition and Clinical Nutrition Departmentand and Former Dean

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Maha Mouhamed Hady

Professor of Nutrition and Clinical Nutrition
Department of Nutrition and Clinical Nutrition
Faculty of Veterinary Medicine
Cairo University

بسم الله الرحمن الرحيم

" قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم

البقره (۳۲)

Cairo University Faculty of Veterinary Medicine

Name: Nader Farouk Kamel Osman

Date of birth: 31/12/1979 Place of birth: Giza Nationality: Egyptian

Degree: Philosophy of Doctor in Veterinary Science - Nutrition and Clinical Nutrition.

Specification: Nutrition and Clinical Nutrition

Title of Thesis: Invetigating the significance of nucleotides dietary fortification in broiler diet

to cope with the diffrtrnt stressors

Supervision:

Prof. Dr. Fathy Farouk Mohamed

Professor of Nutrition and Clinical Nutrition.

Head of Department of Nutrition and Clinical Nutrition and Former Dean.

Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Maha Mouhamed Hady

Professor of Nutrition and Clinical Nutrition, Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University.

Abstract

To study the effects of exogenous dietary nucleotides supplementation on broiler performance, gut health parameters, and immunity. Two separate experiments were performed. The first experiment, 270 one-day-old mixed broiler chicks (Cobb 500) randomly divided into 6 treatment groups with 3 replicates of 15 chicks each. Treatment 1 (CX), a negative control group fed corn-soybean basal diet without added nucleotides. Treatment 2 (CN 0.05) and treatment 3 (CN 0.1), consisted of chicks fed a basal diet with the addition of nucleotides on top at two levels (0.05 and 0.1 %) respectively. Treatment 4 (PX), treatment 5 (PN 0.05), and treatment 6 (PN 0.1) consisted of chicks that were challenged with C.perfringes inoculum ($\sim 4 \times 10^8$ CFU/ml) on d 14, 15, 16 and 17 of the experiment and fed diets similar to treatments 1, 2, and 3 respectively. The trial continued for 35 days. The second experiment, a total of 315 one-day-old mixed broiler chicks (Cobb 500) were randomly assigned to 6 treatment groups with 3 replicates (the number of chick/ replicate differ according the required stocking density). A 2×3 factorial design with two stocking densities (0.073 $m^2/2.2$ kg bird and 0.05 $m^2/2.2$ kg bird) and 3 levels of dietary NP (0, 0.05, 0.1 %) was used in this trial. The trial continued for 35 days. Obtained results showed that dietary nucleotide supplementation markedly ameliorates the negative effects of stressful condition (such as C. perfringens infection or high stocking density) by improving the intestinal barrier functions, intestinal histomorphology, digestive enzymes production, and immune status of bird, which directly reflected on growth performance of affected birds.

Key words: Nucleotides, *Clostriduim perfringens*, high stocking density, lesion score, intestinal barriers, digestive enzyme, growth performance, gut health parameters, and immunity.

,

Dedication

I wish to introduce my deep gratitude and utmost thanks to

My parents

and

Special thanks to

my wife

for her continuous encouragement

to complete this work.

Acknowledgement

First and foremost, I am greatly indebted in all my work and success to merciful ALLAH

I would like to express my deepest thanks to **Prof. Dr. Fathy Farouk Mohamed**, Professor and head of Nutrition and Clinical Nutrition Department and Ex-dean, Faculty of Veterinary Medicine, Cairo University for his valuable advice, continuous support, generous help and intense efforts during this work. His willingness to give his time so generously has been very much appreciated. His help is far beyond what I can describe

I wish also to extend my sincere thanks and appreciations to **Prof. Dr. Maha Mohamed Hady**, Professor Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Cairo University for his close and effective scientific supervision, valuable and continual encouragement, and guidance thought my work and intense efforts during preparation of this thesis

NO words can adequately express my sincere gratitude and great appreciations **Dr. Naela**Mohamed Ragaa Abdel – Haleem, Assistant professor of Nutrition and Clinical Nutrition

Department, Faculty of Veterinary Medicine, Cairo University for her continuous help, advice
and the facilitation she offered during carrying out this thesis.

I sincerely wish to express my gratitude to **Dr Mohamed M. Zaki**, Poultry Diseases Department, Faculty of Veterinary Medicine, and Cairo University

My deepest thanks and appreciations are expressed to **Dr.mahmoud Elhariri**, and **Dr Sherif Marouf**, Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University for their support.

My thanks to **Dr Faten Fathy Mohammed,** Pathology Department, Faculty of Veterinary Medicine, Cairo University.

Finally, I would like to thank all my members of my parents, my beloved wife Nermeen, my son Sief-el-den and my daughter lara for their continuous help, encouragement and patience during the engagement at this research project and preparation of this thesis.

Contents

Subject	Pages
Chapter (1) Introduction	11
Chapter (2) Literature Review	15
1. Nucleotide structure	16
2- Nucleotide biosynthesis	17
3- Sources of nucleotides	18
4- Nucleotide absorption and metabolism	18
5- Functions of nucleotides	19
5.1. Energy Source	19
5.2. Constituents of coenzyme and biological regulators	20
5.3. Protein Synthesis	20
5.4. Lipid Metabolism	21
6- Effects of dietary nucleotides supplementation	21
6.1. Effects on Gut Health	21
6.1.1. Histopathology	21
6.1.2. Effects on Intestinal and pancreatic enzymatic activity	22
6.1.3. Gut permeability as an indicator of gut health	23
6.1.3.1. Tight Junctions.	24
6.1.3.2. Mucin and Microbial mucolysis.	26
6.2. Effects on the immune system	28
6.3. Effects on poultry performance parameters	30
6.4. Effects om Necrotic Enteritis	32
7- Challenges facing poultry Industry	33
7.1. High stocking density	33
7.2. Necrotic enteritis in broilers	35
7.2.1. Clinical signs and lesions	35
7.2.1.1. Clinical necrotic enteritis	36
7.2.1.2. Subclincal necrotic enteritis	36
7.2.2. Intestinal pathology	36
7.2.3. Predisposing factors	37
7.2.3.1. Nutrition	37
7.2.3.2. Stress	38
7.2.3.3. Coccidiosis	39

Chapter (3)

• 3.1. Published Paper: The impact of exogenous dietary	
nucleotides in ameliorating Clostridium perfringens infection	
and improving intestinal barriers gene expression in broiler	
chicken	43
• 3.2. Unpublished Paper: Eubiotic effect of Nucleoforce on	
performance, gut health and some immunological parameters	
in broiler chicken exposed to high stocking	
density	84
Chapter (4) Discussion	116
Chapter (5) Conclusions and Recommendations	125
Chapter (6) Summary	127
Chapter (7) References	130
الملخص االعربي	152
المتسخلص العربي	155

List of Tables

Tables of Chapter (2) Literature Review

No.	Title	Page
1	Nucleotide nomenclature.	39
2	Nucleotide concentration (mg/kg) in some commonly used feed ingredients (as-is basis)	40

Tables of Chapter (3) Published paper

No.	Title	Page
1a	Nutrient compositions of Nucleoforce poultry (NP) (Bioibérica, S.A., Spain).	76
2	Experimental Design	76
1b	Diet composition and chemical analysis	77
3	Microscopic lesion scoring system	78
4 a	Oligonucleotide primers and probes used in SYBR Green real time PCR Source: Metabion (Germany).	79
4 b	The cycle condition according to Quantitect SYBR green PCR kit	79
5	Effect of NP supplementation on intestinal <i>clostridium</i> perfringens concentration and microscopic lesion scores.	80
6	The effect of NP supplementation on mRNA expression of occludin and MUC2.	81
7	The effect of NP supplementation on intestinal histomorphology and goblet cell number.	82
8	The effect of NP supplementation on growth performance parameters of broiler chickens.	83

Tables of Chapter (3) Unpublished paper

No.	Title	Page
1a	Nutrient compositions of Nucleoforce poultry (NP) (Bioibérica, S.A., Spain).	109
2	Experimental Design	109
1b	Diet composition and chemical analysis	110
3a	Oligonucleotide primers and probes used in real time PCR Source: Metabion (Germany)	111
3b	Cycling conditions for 28S rRNA, IL2 and IFN-gamma real time PCR	111
4	The effect of NP supplementation on intestinal histomorphology and goblet cell number.	112
5	The effect of NP supplementation on digestive enzymes.	113
6	The effect of NP supplementation on immunity	114
7	The effect of NP supplementation on growth performance parameters of broiler chickens.	115

List of Figures

Figures of Chapter (2) Literature Review

No.	Title	Page
1	Generalized structure of a nucleotide	41
2	Pyrimidine (uridine and cytidine) and purine (adenosine and guanosine) bases of nucleosides	41
3	Digestion and absorption of nucleotides in gastrointestinal tract.	42

List of abbreviations

A	Adenine
ACTH	Adrenocorticotropic hormone
AGPs	Antibiotic growth promoters
AGIS	
AMP	Alkaline phosphates Adenosine monophosphate
AOAC	Association of Official Analytical Chemists
	·
AP	Alkaline phosphatase
ATP	Adenosine triphosphate
BW	Body weight
BWG	Body weight gain
C	Cytosine
C. perfringens	Clostridium perfringens
Ca.	Calcium
cAMP	Adenosine 3", 5"-cyclic phosphate
CF	Crude fiber
CFU	Colony forming unit
Cl	Chloride
Cm	Cenrimeter
Cm ²	Sequar centimeter
CMP	Cytidine monophosphate
Co	Cobalt
CoA	Co-enzyme A
CP	Clostridium perfringens
CPE	Clostridium perfringens enterotoxin
CS	Cotricosteron
Cu	Cupper
CU- IACUC	Cairo University Institutional Animal Care and Use Committee
D	Day
dAMP	2'-deoxyadenosine 5'-monophosphate
dCMP	2'-deoxycytosine 5'-monophosphat
dGMP	2'-deoxyguanosine 5'-monophosphate
DNA	Deoxyribonucleic acid
EE	Ether extract
EU	European Community
FAD	Flavin adenine dinucleotide
FCR	Feed conversion ratio
Fe	Iron
FI	Feed intake
G	Guanine
GIT	Gastrointestinal tract
Н	Hydrogen atom
HA	Haemagglutination

HI	Haemagglutination inhibition
HPA axis	Hypothalamic–pituitary–adrenal axis
HSD	High stocking density
HZ	Hertz
IBV	Infectious Bursal Disease
IgA	Immunoglobulin A
IgG	Immunoglobulin G
IL-1	Inteleukin-1
IL-2	Inteleukin-2
IL-4	Inteleukin-4
Ile	Isoleucine
IMP	Inosine monophosphate
INF-γ	Interferon- gamma
Kcal	Kilocalorie
kDa	kilodalton
Kg	Kilogram
LPS	Lipopolysaccharides
LSD	Low stocking density
Lys	Lysine
m^2	Sequar meter
MCP	Mono-calcium phosphate
ME	Metabolizable energy
Met	Methionine
Mg	Magnesium
mg/kg	Miligram per kilogram
mm2	Square millimeter
Mn	Manganese
mRNA	Messenger RNA
MUC	Mucin
MUC2	Mucin2
N	Nitrogen
Na	Sodium
NAD	Nicotinamide adenine dinucleotide
NADP	Nicotinamide adenine dinucleotide phosphate
NC	Negative control
NDV	Newcastle Disease Virus
NE	Necrotic enteritis
NetB	Necrotic enteritis B-like toxin
NO	Nitric oxide
NP	Nucleoforce Poultry®
NT	Nucleotide
О	Oxgen atom
P	Phosphorus
PBS	Phosphate buffer saline
PCR	polymerase chain reaction

Pmol	Picomole
Ppm	Part per million
PROT	Protein
PUFA	long-chain polyunsaturated fatty acids
RNA	Ribonucleic acid
SBM	Soybean meal
SCP	single cell proteins
Se	Selenium
SEM	Standard error
Sod. Chloride	Sodium chloride
Sod.Bicarb.	Sodium bicarbonate
Spp	Species
T	Thymidine
Th1	T-helper cell 1
Th2	T-helper cell 2
Thr.	Threonine
TJs	Tissue Junctions
U	Uracil
UDP	Uridine diphosphate
UDP-glucose	Uridine diphosphate glucose
V/C	Villus length/crypt depth
YCW	Yeast cell wall
Zn	Zink
ZO	Zonula occludens
ZO-1	Zonula occludens-1
μL	Microlitre
μmol/L	Micromole per litre