

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Adductor canal block versus intravenous patient controlled analgesia for postoperative pain control for primary total knee arthroplasty

AThesis

Submitted for partial fulfillment of Master degree in ANAESTHESIA

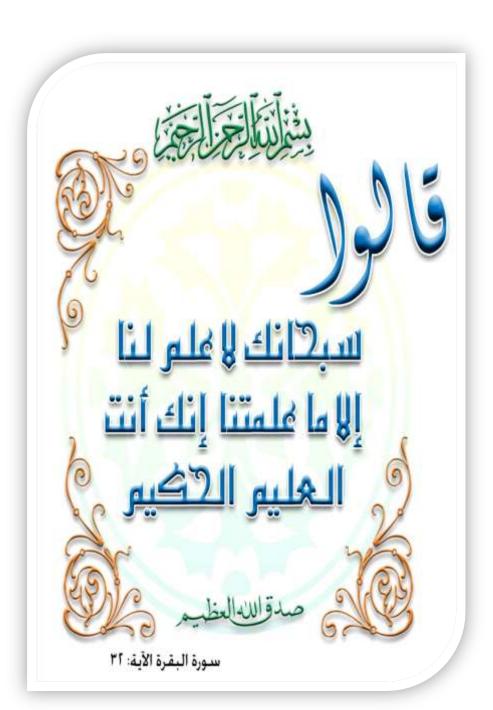
By

Mohamed Hamza Elsaid Elsinsar M.B.B.Ch

Under Supervision of

Prof. Dr. Alaa Eldin Abd Elwahab Amin Korraa

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University


Dr. Sahar Mohamed Talaat Taha

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Amr Gaber Sayed Sharaf

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful, who gave me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Alaa Eldin Abd elwahab Amin Korraa**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Sahar Mohamed Talaat Taha,** Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Amr Gaber Sayed Sharaf,** Lecturer of Anesthesia, Intensive Care and Pain Management,
Faculty of Medicine, Ain Shams University, for guiding me throughout this
work and for granting me much of his time. I greatly appreciate his efforts.

Special thanks to my **Parents**, my **Wife** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🔌 Mohamed Hamza Elsaid Elsinsar

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Post-Operative Pain	4
Ultrasound	14
Adductor canal Anatomy	24
Local anesthetics	31
Patient controlled analgesia	37
Patients and Methods	41
Results	52
Discussion	60
Summary	65
Conclusions	67
References	69
Arabic Summary	

List of Abbreviations

Full-term

ACB : Adductor canal block

ASA : American Society of Anesthesiologists

BMI : Body mass index

Abbr.

CPR : Cardiopulmonary resuscitation

CT : Computed tomography

EPCA : Epidural patient-controlled analgesia

MPQ : McGill Pain Questionnaire

NPI : Numerical Pain Intensity Scale

NRS : Numeric Rating Scale

PCA : Patient-controlled analgesia

SD : Standard deviation

TKA: Total knee arthroplasty

TKR: Total knee replacement

VAS: Visual Analog Scale

VDS : Verbal Descriptor Scale

List of Tables

Table No	o. Title	Page No.
Table (1):	Ultrasound image of various tissues regional anesthesia.	
Table (2):	Demographic data	52
Table (3):	Comparison of the changes in the marterial blood pressure (mmHg) between the two groups	veen
Table (4):	Comparison of the changes in the h rate (beats/min) between the two group	
Table (5):	Incidence of side effects	59
Table (6):	Comparison of the changes in the vianalogue score (VAS R) at rest between two groups	n the
Table (7):	Comparison of the changes in the vianalogue score (VAS _M) at movement between the two groups	isual nent
Table (8):	Nalbuphine extra dose	
	Postoperative rehabilitation	

List of Figures

Figure No.	. Title	Page No.
Figure (1): Figure (2):	Ascending Pain Pathways NRS & VAS (15)	
Figure (3):	Specular reflections vs. scatt reflection	_
Figure (4):	Refraction versus reflection	19
Figure (5):	Ultrasound waves directions	20
Figure (6):	The needle in relation to the probe	e22
Figure (7):	The neurovascular structures of anteromedial thigh	
Figure (8):	Sagittal section through mid- showing the adductor canal	0
Figure (9):	Patient positioning	28
Figure (10):	The adductor canal lies medially beneath sartorius.	U
Figure (11):	Pharmacologic structure bupivacaine.	
Figure (12):	Guidelines for the management local anesthetic systemic toxicity.	
Figure (13):	Participant flow diagram	43
Figure (14):	Sterile towels, 20 mL syringes local anesthetic, Sterile gloves gauge spinal needle for infiltration	, 22
Figure (15):	Ultrasound machine (Toshiba ultras Viamo)	

Figure (16):	12 MHz linear type probe of ultrasound machine.	47
Figure (17):	Cross-sectional view showing saphenous nerve as it runs alongside the femoral artery in the adductor canal deep to the sartorius muscle	49
Figure (18):	Local anesthetic spreading under sartorius within adductor canal	49
Figure (19):	Comparison of mean blood pressure changes between two groups	53
Figure (20):	Comparison of heart rate changes in two groups	54
Figure (21):	The side effects among the studied groups	59
Figure (22):	Visual analogue score (VAS) at rest between the two groups	55
Figure (23):	Visual analogue score (VAS _M) at movement between the two groups	56
Figure (24):	Nalbuphine extra dose	57
Figure (25):	Postoperative rehabilitation	58

Introduction

atients undergoing total knee arthroplasty (TKA) can experience significant postoperative pain. Adequate analgesia facilitates early rehabilitation and improves patient satisfaction. (1)

Pain control modalities for post-TKA include intravenous patient-controlled analgesia (PCA), peripheral nerve blockade, and continuous epidural analgesic techniques. All methods have been shown to be efficacious in relieving postoperative pain. However, conventional techniques that use intravenous PCA with morphine and fentanyl are associated with side effects, such as respiratory depression, sedation, pruritus, nausea and vomiting, hypotension, constipation, and urinary retention. (2)

Regional blocks of the lower limb using a combination of a sciatic nerve block with a femoral nerve block is an alternative technique to the conventional neuraxial (spinal or epidural) anesthesia, which is problematic as the patients may be septic with unstable cardiovascular system, and spinal/epidural. (3)

Anesthesia may drop the blood pressure further. In recent years, adductor canal block (ACB) has been introduced as a pure sensory nerve block for postoperative analgesia

following knee surgery. ACB technique is relatively easy and is performed under ultrasound guidance. (4)

Adductor canal blocks (ACBs), which target the saphenous nerve and provide comparable analgesia to femoral nerve blocks with a lesser degree of quadriceps weakness, have been the focus of multiple recent investigation. (5)

Aim of the Work

The purpose of this study is to compare efficacy, hemodynamic effects, opiate consumption and side effects of Adductor canal block and intravenous patient-controlled analgesia (PCA) in terms of postoperative primary total knee arthroplasty analgesia.

Chapter (I) Post-Operative Pain

A. Definition of pain:

Pain is defined by the International Association for the Study of Pain as "an unpleasant sensory and emotional experience arising from actual or potential tissue damage or described in terms of such damage. (6)

B. Physiology of pain

Pain is often classified by its pathophysiology into 2 major types: nociceptive and neuropathic.

of pain that occurs when free nerve endings are activated by tissue damage or inflammation. Pain pathway involves three orders neurons, The majority of the first-order nociceptive neurons make synaptic connections in Rexed layer II (substantia gelatinosa) and the second-order neurons make synaptic connections in laminae IV-VIII. The second-order neurons also receive input from mechanoreceptors and thermoreceptors, the cell bodies of third order neurons lie within the ventral posterolateral of the thalamus which terminate in the ipsilateral postcentral gyrus. (7) Nociception involves the four processes of transduction, transmission, perception, and modulation. These processes are highly complex, but a simple