

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

A Single Center Experience in Pediatric Pacing

Thesis

Submitted For Partial Fulfillment of Master Degree in Cardiology

Under supervision of **Prof. Dr. Samir Saleh Wafa**

Professor of Cardiology Faculty of Medicine - Ain-Shams University

Prof. Dr. Rania Samir Ahmed

Professor of Cardiology Faculty of Medicine - Ain-Shams University

Dr. Ahmed Nabil Ali

Lecturer of Cardiology
Faculty of Medicine - Ain-Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Samir Saleh Wafa**, Professor of Cardiology Faculty of Medicine - Ain-Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Rania Samir Ahmed**, Professor of Cardiology Faculty of Medicine - Ain-Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Mabil Ali,** Lecturer of Cardiology Faculty of Medicine - Ain-Shams University, for his great help, active participation and guidance.

Hosny Arafa

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	2
Review of Literature	3
Patients and Methods	25
Results	33
Discussion	50
Summary	57
Conclusion	
Recommendations	
References	64
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Guidelines for choice of pacemaker get in selected indications for pacing	
Table (2):	Patient clinical demographic data	34
Table (3):	Device data at time of follow up	36
Table (4):	Types and indications of second an procedures	
Table (5):	Comparison between patients having and DDDR	_
Table (6):	Comparison between epicardial endocardial PPMs as regards battery measurements	& lead
Table (7):	Complications among studied patients.	48
Table (8):	Difference between model leads according complications	•

List of Figures

Fig. No.	Title	Page No.
Figure (1):	ECG of one of our patients (patient showing VVI pacing rhythm with a rate of 78 bpm.	pacing
Figure (2):	Showing R wave amplitude measurer Medtronic device in one of our patier has a DDDR device	nts who
Figure (3):	Showing ventricular pacing threshold one of our patients with a DDDR devi	
Figure (4):	Different pacemaker programmers u our study	
Figure (5):	Mode of pacing among total population	
Figure (6):	Device manufacturer data among patients	
Figure (7):	Device manufacturer among population	
Figure (8):	Model of the battery among studied p	atients 38
Figure (9):	Model of the lead among studied patie	ents 39
Figure (10):	Kaplan-Meier survival curves of batteries in endocardial and epi	icardial
	PPMs	
Figure (11):	Kaplan-Meier survival curves in endo versus epicardial ventricular lead	

List of Abbreviations

Abb.	Full term
ACC/AHA/HRS	American College of Cardiology, the American Heart Association, and the Heart Rhythm Society
ASD	. Atrial septal defect
AV	Atrioventricular
CAVC	.Common AV canal
CHB	.Complete, heart block
CHB	.Congenital heart block
CHD	.Congenital heart disease
EMI	.Electro-Magnetic Interference
HF	.Heart failure
L-TGA	.Levo-transpostion of great arteries
LV	.Left ventricular
PDA	.Patent ducts arterioses
PPM	.Permanent pacemaker
SHD	Structural heart disease
SVCS	.Superior vena cava syndrome
VSD	. Ventricle septal defect

Introduction

Permanent pacemakers have a growing use in the pediatric population due to congenital and surgically acquired rhythm disturbances, however, they present unique problems and implications. Their implantation, follow up, the diversity and complexity of pediatric patients and congenital heart disease make device management a highly individualized art in pediatric pacing. Certain challenges are posed in an adult-like somatic growth and active lifestyle susceptibility to infection and generally anticipated long survival (*Takeuchi and Tomizawa*, 2012).

Permanent pacemaker, need for lead, and generator revision, as well as lifestyle modifications, are all device-related complications that present a significant concern for patients and practitioners (*Berul et al.*, 2008).

AIM OF THE WORK

The purpose of this study is:

The current study aims to present our institute's experience in pediatric and adolescent pacemaker implantation as well as long term outcomes.

Review of Literature

Cardiac Devices In Children

Introduction:

Since children are paced for a lifetime, they are prone to a higher incidence of long-term adverse events and are at high risk of experiencing the adverse consequences of cardiac stimulation at a non-optimal site (*Cohen et al.*, 2001).

Because of small body size, the presence of a congenital defect with a right-to-left shunt, or postoperative absence of transvenous access to the target chamber, children often need to be permanently paced epicardially (*Berul et al.*, 2003; *Khairy et al.*, 2006).

Children's higher activity levels lead to greater stress on device hardware and their growth expectancy leads to a higher incidence of lead dislodgement or fracture in the follow-up. Concerns have been voiced regarding the long-term performance of endocardial leads in children, given the high incidence of abandonment, potential valvular injury and vascular crowding (*Bar-Cohen et al.*, 2006; *Figa et al.*, 1997; *Klug et al.*, 2003).

Endocardial leads are relatively contraindicated in patients with right-to-left shunt because of the risk of systemic thromboembolism (*Khairy et al.*, 2006).