

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University,
Faculty of Engineering,
Structural Engineering Department,

Managing Delay Claims Using BIM Technology for Construction Projects in Egypt

A Thesis

Submitted to Faculty of Engineering - Ain Shams University in Partial Fulfillment for the Requirements of *Doctorate of Philosophy* in Engineering (Structural Engineering)

BY

Hayssam Ossama Mohamed Elhusseiny Abdelsalam

B.Sc. Construction Engineering 2011 M.Sc. Civil Engineering 2013

Supervised BY

Prof. Dr. Ibrahim Abdel Rashid Nosair

Professor of Construction Management Structural Engineering Department, Ain Shams University Prof. Dr.
Ahmed Samer Ezeldin

Professor of Construction Management Construction Engineering Department, American University in Cairo

Structural Engineering Department
Faculty of Engineering
Ain Shams University

Cairo, Egypt August 2021

Acknowledgements

First and foremost, praise to ALLAH the Cherisher and Sustainer of the world, without His Guidance and Help this work would not have been accomplished.

Then I would like to express my deep gratitude to my supervisors, **Prof. Dr. Ibrahim Abdel Rashid Nosair** and **Prof. Dr. Ahmed Samer Ezeldin** for their invaluable advice, continuous support, and patience during my PhD study. Their immense knowledge and plentiful experience have encouraged me in all the time of my academic research.

Finally, I would like to express my sincere thankfulness to my parents and my wife. Without their tremendous understanding and encouragement in the past few years, it would be impossible for me to complete my study.

Hayssam Ossama Mohamed Elhusseiny Abdelsalam

Abstract

There are three main criteria that account for a construction project's success: completion on-time, within budget, and following the specifications. Nowadays, the subject of delays is considered one of the most challenging problems for construction projects, particularly in Egypt. Delay occurrence normally leads to an increase in the project's time and so its cost. Analyzing the factors of construction projects' delays in Egypt while attempting to mitigate their impact is a matter of crucial importance; that's why a systematic processing framework was developed. Considered as one of the main elements for this framework, a survey questionnaire was conducted among the relevant key parties in the Egyptian construction industry. The aim was to assess the relevance and impact of the various delay causes on construction projects, to identify the responsible party as well as to evaluate the effect of using the Building Information Modelling (BIM) on construction delays. Besides, a user program was developed to help assess the delay causes' impact on the construction project's concerned activities using BIM. The program was also designed to assist the user in identifying the potential suitable mitigation measures according to the delay cause type. Thus, this research promotes the implementation of a systematic processing framework, by using a developed user program, to outline a course for examining delay claims' factors for construction projects in Egypt while validating the outcomes through a survey questionnaire. One of the study's main objectives is to investigate the delay causes' effect on the construction project's duration and cost. The developed user program achieved this by analyzing the concerned activities' affected duration and cost following the selected delay cause and its associated mitigation measures. BIM was the platform used for the developed plug-in to carry out such analysis. Then, the project's concerned activities' duration and cost outputs analysis were presented to highlight the main findings in terms of delay/saving impact. These findings aimed to emphasize the percentage

Abstract

decrease/increase in delay claims as well as the percentage decrease/increase in the associated cost for the various delay causes. It is worth mentioning that the attained percentages were in good correlation to the ones obtained from the survey questionnaire. Thus, they were considered important benchmarks to be referred to for future similar incidents.

Table of Contents

Acknov	wled	gements	I
Abstra	ct .		II
Table o	of Co	ontents	.IV
List of	Figu	ires	VII
List of	Tabl	les	XII
List of	Abb	oreviationsX	ΚVI
Chapte	er 1 I	Introduction	1
1.1	Ov	verview	1
1.2	Pro	oblem Statement	3
1.3	Re	search Objective	4
1.4	Re	search Methodology	4
Chapte	er 2 I	Literature Review	6
2.1	Ov	erview	6
2.2	De	elays in Construction Projects	6
2.2	1	Delay's Definition	6
2.2	2	Delay's Causes	6
2.2	3	Delay's Analysis	7
2.2	4	Delays in Construction Projects in Egypt	8
2.2	5	Delay's Mitigation Measures	. 14
2.3	Bu	ilding Information Modelling (BIM)	. 21
2.3	.1	What is Building Information Modeling (BIM)	. 22
2.3	.2	History of BIM	. 24

2.3.3	4D BIM	24
2.3.4	5D BIM	27
2.3.5	Advantages of Using BIM	28
2.3.6	Challenges of BIM	30
2.3.7	BIM's Effect on Construction Delays	31
2.3.8	BIM in the Egyptian Construction Industry	31
2.4 Co	nstruction Projects Claims	32
2.4.1	Claim's Definition	32
2.4.2	Claim's Causes & Types	33
2.4.3	Claim's Management	35
2.4.4	Delay Claim's Challenges	37
Chapter 3 S	Systematic Processing Framework	39
3.1 Ov	erview	39
3.2 De	veloped Framework Sequence	39
Chapter 4 (Questionnaire & Developed User Program	46
4.1 Ov	erview	46
4.2 Qu	estionnaire	46
4.2.1	Introduction	46
4.2.2	Questionnaire Objective	46
4.2.3	Questionnaire Organization	46
4.2.4	Target Population	47
4.2.5	Sampling Frame	47
4.2.6	Sampling Technique and Size	48

Table of Contents

4.2	2.7	Data Collection	49
4.3	De	eveloped User Program	49
4.	3.1	Introduction	49
4	3.2	3D Modeling	50
4	3.3	4D Modeling	50
4	3.4	5D Modeling	52
4	3.5	Integrating the Developed User Plug-In	53
Chapt	er 5 l	Results & Discussion	60
5.1	Ov	verview	60
5.2	Su	rvey Questionnaire Findings	60
5.2	2.1	Respondents' Background	60
5.2	2.2	Delay Causes Impact and Responsible Party for Construction Projects in Egypt.	60
5.2	2.3	Building Information Modelling (BIM) for Construction Projects in Egypt	68
5.3	De	eveloped User Program Verification	73
5.4	Va	lidation Analysis	122
Chapt	er 6 (Conclusions & Recommendations	126
6.1	Co	onclusions	126
6.2	Re	commendations	128
Roford	nces		130

List of Figures

Fig. 1 4D modeling usage categories
Fig. 2 Developed systematic processing framework
Fig. 3 Z value for a normal distribution of 95% confidence level
Fig. 4 Flowchart presenting the user program development process
Fig. 5 Respondents' work experience 61
Fig. 6 Respondents' years of experience 61
Fig. 7 Respondents' types of projects achieved
Fig. 8 Percentage respondents for the percentage delay of a project duration related to each delay
cause
Fig. 9 Responses concerning the responsible party related to each delay cause
Fig. 10 Percentage respondents using BIM in Egypt and abroad
Fig. 11 Percentage respondents using 3D, 4D and 5D BIM
Fig. 12 Percentage respondents for the percentage saving in delay for each delay cause using
BIM
Fig. 13 Percentage respondents for the percentage ratio of the saving in cost with respect to the
saving in delay71
Fig. 14 The Navisworks user interface displaying the 5D BIM model for the case study project73
Fig. 15 Apartments' floor plan distribution for each prototype
Fig. 16 The user plug-in indicating the presence of delay for the activity
Fig. 17 The user plug-in presenting the list of predefined delay causes for the user to select from
76

Fig. 18 Categorizing "variation orders/change of scope during construction" delay cause by the
user plug-in
Fig. 19 Categorizing "slow decision making" delay cause by the user plug-in
Fig. 20 Categorizing "delay in payments by owner" delay cause by the user plug-in
Fig. 21 Categorizing "difficulty of coordination between the different parties" delay cause by the
user plug-in
Fig. 22 Categorizing "poor site management and supervision" delay cause by the user plug-in. 79
Fig. 23 Categorizing "delay in reviewing and approving the design documents by the owner"
delay cause by the user plug-in
Fig. 24 Categorizing "ineffective planning and scheduling of project" delay cause by the user
plug-in
Fig. 25 Categorizing "delays in sub-contractors' works" delay cause by the user plug-in 80
Fig. 26 Categorizing "difficulties in financing project by contractor" delay cause by the user
plug-in81
Fig. 27 Categorizing "errors / clashes in project documents" delay cause by the user plug-in 81
Fig. 28 Categorizing "unavailability / slow delivery of construction materials and equipment"
delay cause by the user plug-in
Fig. 29 Categorizing "poor productivity level of labors" delay cause by the user plug-in 82
Fig. 30 Categorizing "delay related to shop drawings and material samples" delay cause by the
user plug-in
Fig. 31 Categorizing "unexpected subsurface conditions" delay cause by the user plug-in 83
Fig. 32 Categorizing "force majeure" delay cause by the user plug-in
Fig. 33 Highlighted internal partitions subject to delay for the corresponding floor

Fig. 34	Highlighted similar internal partitions in the other repetitive floors
Fig. 35	The user plug-in indicating all other activities associated with the affected internal
	partitions in addition to asking about the demolishing activity's duration & cost 87
Fig. 36	Plug-in's duration and cost summary outputs for "variation orders/change of scope
	during construction" delay cause related to internal partitions activities
Fig. 37	Plug-in's duration and cost summary outputs for "slow decision making" internal delay
	cause related to ground floor internal blockwork activity
Fig. 38	Plug-in's duration and cost summary outputs for "delay in payments by owner" internal
	delay cause related to first floor flooring activity
Fig. 39	Plug-in's duration and cost summary outputs for "difficulty of coordination between the
	different parties" internal delay cause related to ground floor sanitary base activity 94
Fig. 40	Plug-in's duration and cost summary outputs for "poor site management and
	supervision" internal delay cause related to Zone (1) ground slab reinforcement activity
	95
Fig. 41	Plug-in's duration and cost summary outputs for "delay in reviewing and approving the
	design documents by the owner" internal delay cause related to Zone (1) RC foundation
	shuttering activity
Fig. 42	Plug-in's duration and cost summary outputs for "ineffective planning and scheduling of
	project" internal delay cause related to Zone (2) ground slab shuttering activity 96
Fig. 43	Plug-in's duration and cost summary outputs for "delays in sub-contractors' works"
	internal delay cause related to ground floor external walls paint activity96
Fig. 44	Plug-in's duration and cost summary outputs for "difficulties in financing project by
	contractor" internal delay cause related to second floor windows and doors activity 97

Fig. 45	Plug-in's duration and cost summary outputs for "errors/clashes in project documents"	
	internal delay cause related to ground floor electrical base activity	17
Fig. 46	Plug-in's duration and cost summary outputs for "unavailability / slow delivery of	
	construction materials and equipment" internal delay cause related to ground floor	
	flooring activity9	8
Fig. 47	Plug-in's duration and cost summary outputs for "poor productivity level of labors"	
	internal delay cause related to Zone (1) first floor columns reinforcement activity 9	8
Fig. 48	B Plug-in's duration and cost summary outputs for "delay related to shop drawings and	
	material samples" internal delay cause related to ground floor windows and doors activit	у
	9	19
Fig. 49	Plug-in's duration and cost summary outputs for "unexpected subsurface conditions"	
	internal delay cause related to excavation activity9	19
Fig. 50	The delay duration for each delay cause and its corresponding activity	0
Fig. 51	The percentage decrease in delay claims for each delay cause and its corresponding	
	activity)1
Fig. 52	2 The associated delay cost for each delay cause and its corresponding activity	0
Fig. 53	The percentage saving in associated cost for each delay cause and its corresponding	
	activity	1
Fig. 54	Plug-in's duration and cost summary outputs for "force majeure" external delay cause	
	related to site preparation and offices mobilization activity	20
Fig. 55	Questionnaire vs. Developed User Program percentages saving in delay/percentages	
	decrease in delay claims for the studied delay causes	23

ig. 56 Questionnaire vs. Developed User Program percentage saving in cost/p	ercentage
decrease in associated cost for the studied delay causes	124