

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The predictive value of urinary trypsinogen-2 dipstick for early diagnosis of acute pancreatitis in intensive care

AThesis

Submitted for partial fulfillment of master degree in General Intensive Care

By

Mohamed Magdy Mohamed Ammar

M.B.B.Ch, Faculty of Medicine, Tanta University

Under Supervision of

Prof. Dr. Mohamed Sidky Mahmoud Zaki

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Rania Magdy Mohamed Ali

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Dalia Ibrahim Mohamed EL-Naggar

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful, who gave me the strength to accomplish this work,

My deepest gratitude to **Prof. Dr. Mohamed Sidky Mahmoud Zaki,** Professor of Anesthesia, Intensive Care and
Pain Management, Faculty of Medicine, Ain Shams University,
for his valuable guidance and expert supervision, in addition to
his great deal of support and encouragement. I really have the
honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Rania Magdy Mohamed Ali,** Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Dalia Ibrahim Mohamed El-Naggar,** Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Wife** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mohamed Magdy Mohamed Ammar

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction	1
Aim of the Work	4
Review of Literature	
Acute Pancreatitis	5
Trypsinogen	34
Patients and Methods	45
Results	53
Discussion	65
Summary	72
Conclusion	74
References	75
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

ALP : Alkaline phosphatase

ALT : Alanine transaminase

AP : Acute pancreatitis

AST : Aspartate transaminase

CBC : Complete blood count

CE : Contrast enhanced

CECT : Contrast-enhanced computed tomography

CFTR : Cystic Fibrosis Transmembrane Conductance Regulator

CKD : Chronic kidney disease

CNP : Chloro-4-nitrophenyl- α -D-maltotrioside

CRP : C-reactive protein

CT : Computerized tomography

DM : Diabetes mellitus

EGDT : Early goal-directed therapy

EN : Enteral nutrition

ERCP : Endoscopic retrograde cholangiopancreatography

ES : Sphincterotomy

EWS : Early warning score

FNA : Fine needle aspiration

HES : Hydroxyethyl starch

ICAM-1: Intercellular adhesion molecule-1

IL-1b : Interleukin-1b

INR : International normalized ratio

LFT: Liver function tests

MAP : Mild acute pancreatitis

MOD : Marshall Organ Dysfunction

MODS : Multiple organ dysfunction syndrome

MRCP : Magnetic Resonance Cholangio-Pancreatography

MRI : Magnetic resonance imaging

MSAP : Moderately severe acute pancreatitis

NG : NasogastricNJ : Nasojejunal

PAF : Platelet activating factor

PAP : Pancreatitis-associated protein

PAR : Protase-activated receptor

PC: Prothrombin Concentration

PMN: Polymorphonuclear

PN: Parenteral nutrition

PSTI : Pancreatic secretory trypsin inhibitor

PT : Prothrombin

PT : Prothrombin time

RAC : Revised Atlanta classification

RCT : Randomized control trial

RFT : Renal Function test

ROC : Receiver Operative Characteristics

SAP : Severe acute pancreatitis

SD : Standard deviation

SIRS : Systemic inflammatory response syndrome

SPINK1 : Serine protease inhibitor Kazal type 1

SPSS : Statistical package for social science

TAP : Trypsinogen activation peptide

TNF-α: Tumor necrosis factor-a

TPS: Trypsinogen

TPS-1: Trypsinogen-1

TPS-2: Trypsinogen-2

TPS-3: Trypsinogen-3

US : Ultrasonography

List of Tables

Table No	o. Title	Page No.
Table (1):	Etiology of pancreatitis. Conditions are associated with an increase likelihood of developing acute pancreating	the
Table (2):	Current definitions in the 2013 classifi of acute pancreatitis	
Table (3):	Baseline characteristics of the stu groups	
Table (4):	Biochemical parameters of the stu group.	
Table (5):	Demographic characteristics and labor findings of the studied groups pancreatitis and acute pancreatitis)	(Not
Table (6):	Medical history of studied patients	56
Table (7):	Radiological findings and revised Atlaclassification among the studied cases	
Table (8):	Specific laboratory finding suggest diagnosis of pancreatitis	•
Table (9):	Receiver-operating characteristic (R curves for serum lipase, serum amy and Urinary Trypsinogen II for diagnosis of acute pancreatitis	lase the

List of Figures

	<u> </u>
Figure (1): A schematic overview of acute pancreatitis	w of pathogenesis
Figure (2): Structure of Trypsino	gen35
Figure (3): Activation of Trypsin	ogen36
Figure (4): Unused dipstick	43
Figure (5): Positive dipstick	43
Figure (6): Negative dipstick	43
Figure (7): Count of patients rega	arding gender55
Figure (8): Medical history of stu	idied patients57
Figure (9): History of gall bladde	er stones 57
Figure (10): Ultrasonography of st	tudied patients 59
Figure (11): CT abdomen of studio	ed patients59
Figure (12): Revised Atlanta of studied patients	classification of59
Figure (13): Serum lipase	62
Figure (14): Serum amylase	62
Figure (15): Urinary trypsinogen-2	262
Figure (16): Receiver-operating chacurves for serum lipas and urinary trypsin diagnosis of acute pan	se, serum amylase

Introduction

cute pancreatitis is a sudden inflammation in the pancreas, with potential and variable involvement of adjacent organs or other organ systems.

Gallstones and alcohol are the leading causes of acute pancreatitis. Approximately 50% to 70% of cases are caused by gallstones. Older age, lower socioeconomic class and male gender are correlated with a higher incidence of acute pancreatitis (*Roberts et al.*, 2013).

Also, acute pancreatitis can result from mechanical ampullary obstruction, penetrating peptic ulcers, mumps infection, abdominal trauma, post endoscopic retrograde cholangiopancreatography (ERCP) occurring in 1-15% of patients undergo this procedure (*Woods et al., 2010*).

Acute pancreatitis could be classified as mild, moderately severe, or severe according to Revised Atlanta Classification (RAC) for acute pancreatitis severity (*Banks et al.*, 2013).

Acute pancreatitis is known to be triggered because of extra pancreatic origin but irrespective of the etiology, premature activation of trypsin within the pancreas is considered common feature at the acinar cell level. So, trypsinogen-2 and also the trypsin-2- α_1 -antitrypsin complex are accurate diagnostic markers of acute pancreatitis. However, comparisons with amylase are

biased by the fact that amylase is routinely used as a major diagnostic criterion for acute pancreatitis (*Mishra et al.*, 2019).

There are three trypsinogen (TPS) isoenzymes, which are cationic (TPS-1), anionic (TPS-2) and a minor isoenzyme (TPS-3). Amylase and lipase secreted by the acinar cells of the pancreas are the most common laboratory markers used to establish the diagnosis of acute pancreatitis (*Paju and Stenman et al.*, 2006).

In acute pancreatitis, trypsinogen-2 levels usually rise to high levels within a few hours and fall within three days (*Matull et al.*, 2006).

Elevated amylase and lipase levels can be non-specific, depending on the time since onset of pain, other intra-abdominal processes, and concomitant chronic diseases such as renal insufficiency (*Sutton et al.*, 2009).

Ultrasonography is used in the diagnosis and assessment of imaging of organs and soft tissue structures. Due to its non-invasive nature and continuing improvements in imaging quality, ultrasound imaging is achieving a key role in assessment of pancreas. It can diagnose pancreatitis and exclude other causes of acute abdominal pain. With increasing operator experience and advances in technology ultrasonography can evaluate pancreatitis in majority of cases (*Bhatt et al.*, 2017).

Diagnosis of acute pancreatitis depends mainly on clinical diagnosis, but computerized tomography (CT) scan is required to differentiate mild acute pancreatitis from severe necrotic pancreatitis (*Dimastromatteo et al.*, 2017).

The local and systemic inflammatory response resulting from acute pancreatitis leads to fluid depletion in the form of vomiting, reduced oral fluid intake, third-space fluid loss, and increased insensible losses in sweat and respiration. Fluid replacement in acute pancreatitis can be undertaken using crystalloid, colloid, or a combination of both. Ringer's lactate is the preferred crystalloid fluid (*Wu et al.*, 2011).

Acute pancreatitis results in the rapid metabolism of fat and protein due to the hypercatabolic state. Nutritional support aims to provide adequate caloric intake and modulate the oxidative stress response during the initial phase of acute pancreatitis, thereby counteracting the catabolic effect (*McClave et al.*, 2012).