

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of Science Chemistry Department

Synthesis, characterization, biological approach and various applications of some novel transition metal complexes

A Thesis

Submitted in Partial Fulfilment of the Requirements of PhD degree in Chemistry

Presented by

Suad Ahmed Mohammed Moubeen

M. Sc. (2008)

Chemistry department, Faculty of Science, Sebha University

Supervised by

Prof. Dr. Mohamed Fathy El-Shahat.

Professor of Inorganic Chemistry, Faculty of science, Ain Shams University

Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry, Faculty of science, Ain Shams University

Prof. Dr. Attia S. Attia

Professor of Inorganic Chemistry, Faculty of science, Ain Shams University

Faculty of Science Chemistry Department

Synthesis, characterization, biological approach and various applications of some novel transition metal complexes

A Thesis

Submitted in Partial Fulfilment of the Requirements of PhD degree in Chemistry

Presented by

Suad Ahmed Mohammed Moubeen

M. Sc. (2008)

Chemistry department, Faculty of Science, Sebha University

To

Chemistry Department

Faculty of Science

Ain Shams University

Faculty of Science Chemistry Department

Synthesis, characterization, biological approach and various applications of some novel transition metal complexes

Thesis Advisors

Thesis Approval

Prof. Dr. Mohamed Fathy El-Shahat.

Professor of Inorganic Chemistry

Faculty of science, Ain Shams University

Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry

Faculty of science, Ain Shams University

Prof. Dr. Attia S. Attia

Professor of Inorganic Chemistry

Faculty of science, Ain Shams University

Head of Chemistry department

Prof. Dr. Ayman Ayoub Abdel-Shafi

سورة البقرة الآية: ٣٢

Abstract

Abstract

In the first part, new Schiff base complexes of mononuclear Mn(II), Ru(III), Co(II), Ni(II), Cu(II), and Zn(II) were synthesized by template condensation of 2,5-thiophene-dicarboxaldehyde and 2-aminobenzimidazole., and the metal complexes were structurally characterized by elemental analysis, FT-IR spectroscopy, ¹H NMR spectra, electronic spectra, ESI-Ms spectra, EPR spectra, conductance measurements and magnetic susceptibility measurements. The molar conductance measurements of the complexes showed non-electrolytic nature. In all the complexes, the Schiff base coordinates through azomethine nitrogen. The physicochemical and spectroscopic measurements reveal octahedral environment for all metal complexes. The antibacterial activity, antioxidant activity and DNAinteraction of the Schiff base ligand and its metal chelates were investigated to find their role in drug design.

In second part, a new series of mononuclear octahedral Ru(III) complexes of general formula $[RuL^{1-3}Cl]Cl_2$ (1-3) where L = dianion of Schiff bases namely: 2,2'-(((1E,1'E)-thiophene-2,5-diylbis(methane-lylidene))bis-(azaneylylidene))diphenol (H_2L^1) . 2,2'-(((1E,1'E)-thiophene-2,5-diylbis-(methaneylylidene))bis(azaneylylidene))dibenzenethiol (H₂L²) and 2,2'-(((1E,1'E)-thiophene- (H_2L^3) , 2,5-diylbis(methaneylyli-dene))bis(azaneylyli-dene))-dibenzoic acid respectively are synthesized and characterized by different physico-chemical techniques. The interaction of complexes with CT-DNA studied by different techniques. Further, the antiproliferative activity of the complexes on Human cervical cancer cells (HeLa) and breast cancer cells (MCF-7) were evaluated by MTT assay, which revealed that, all the complexes showed more intense inhibition against HeLa and MCF-7 cell lines.

Dedication to

The one who honored me by bearing his name ,my father, may God Almighty have mercy on him ...who taught us that we have to spend the most precious and precious in order to reach a high academic degree...and he left before seeing its planted fruit... to the spring of tenderness and the light of my mother, may God Almighty have mercy on her... whoever her invitations was the best companion to excellence...to the support, the arm and the forearm, my brothers and sisters, I would like to give you a gift of love, elevation and dignity... to everyone who taught me a letter... to everyone who supported me, even with a smile (my brother Omar and his daughter Laila) to everyone who helped me in this message, they all have much respect and appreciation from me, and may Allah reward them with good from me.

Suad Ahmed Mohammed Moubeen

ACKNOWLEDGEMENT

First and foremost, I would like to thank **God** for giving me the opportunity and well-power to accomplish this work.

I would like to express my sincere gratitude to Prof. Dr. Mohamed Fathy El-Shahat, Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University. He was always kind enough to suggest the topic of research and to follow up the progress of the work with keen interest, guidance and valuable criticism and whose efforts made this humble work possible.

Also, I would like to thank my supervisor, **Prof. Ayman Ahmed Abdel Aziz**, Prof. of Inorganic Chemistry, Chemistry Department,
Faculty of Science, Ain Shams University, for the patient guidance,
encouragement and advice he has provided throughout my time as his
student. I have been extremely lucky to have a supervisor who cared
so much about my work, and who responded to my questions and
queries so promptly.

I wish to express my sincere gratitude to **Prof**. **Attia El-Sayed Attia**, Associate Prof. of inorganic Chemistry, Chemistry
Department, Faculty of Science, Ain Shams University, for providing guidance and feedback throughout this work.

Suad Ahmed Mohammed Moubeen

Contents

List of Abbeviation

DMSO Dimethyl Sulfoxide

MeOH Methanol

DMF Dimethylformamide

DPPH 2,2-Diphenyl-1-picrylhydrazyl

EtBr Ethidium Bromide

Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

HMBATSC 2-Hydroxy 3-Methoxy Benzaldehyde Thiosemicarbazone

AA Ascorbic acid

CT-DNA Calf thymus DNA

PUC19 DNA Plasmid DNA PUC19

SC Supercoiled DNA

NC Nicked circular DNA

CONTENTS

	Page No.
Abstract	i
Dedication	ii
Acknowledgment	iii
List of Abbeviation	iv
Contents	v
List of tables	viii
List of Schemes	x
List of figures	xiv
Part 1	
1.1.Introduction	1
1.2. Experimental	33
1.2.1. Materials	33
1.2.2. Physicochemical measurements	33
1.2.3. Syntheses of the ligand	34
1.2.4. Template synthesis of metal complexes	35
1.2.5. Biological studies	35
1.2.5.1. Anti-bacterial screening	35
1.2.5.2. DPPH radical scavenging assay	36
1.2.5.3. In vitro DNA Binding Affinity	36
1.2.5.3.1. UV-Vis. absorption titration	37
1.2.5.3.2. EtBr Competitive assay	37
1.2.5.3.3. Viscosity Measurements	38
1.2.5.4. Agarose Gel Electrophoresis	39
1.3. Results and discussion	40
1.3.1. ESI-mass spectra	42

1.3.2. Infrared spectra	47
1.3.3. NMR Spectra	54
1.3.4. Magnetic properties and electronic spectra	60
1.3.5. EPR spectrum of Cu(II) and Ru(III) complexes	67
1.3.6. Antimicrobial activity	71
1.3.7. Scavenging radical activity	73
1.3.8. DNA interaction studies	76
1.3.8.1. Electron absorption studies	76
1.3.8.2. Quenching studies	84
1.3.8.3. Viscosity measurements	92
1.3.8.4. Gel electrophoretic analysis	94
1.4. Conclusions	96
Part 2	
2.1. Introduction	97
2.1.1. Cancer overview	97
2.1.2. Metal complexes in cancer chemotherapy	97
2.1.3. Ruthenium complexes as anticancer agents	98
2.2. Experimental	160
2.2.1. Materials	160
2.2.2. Physicochemical measurements	160
2.2.3. Syntheses of the ligands	161
2.2.4. Synthetic procedure for the preparation of complexes (1-3)	162
2.2.5. Estimation of Ru content	163
2.2.6. Biological studies	163
2.2.6.1. Antioxidant activity evaluation	163
2.2.6.2. In vitro DNA binding affinity	164