

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Impact of Axillary Lymph Nodes Ratio on Outcomes of Non Metastatic, Triple Negative Breast Cancer Patients treated with Up Front Surgery (A Retrospective Study)

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Oncology & Nuclear Medicine

By

Asmaa Khalaf Ahmed Mohamed M.B, B. Ch,

Under Supervision of

Prof. Dr. Nivine Mahmoud Ahmed Gado

Professor of Clinical Oncology & Nuclear Medicine, Faculty of Medicine, Ain Shams University

Dr. Diaa el din Moussa sherif

Lecturer of Clinical Oncology & Nuclear Medicine, Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Precious and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Miveen Mahmoud**Alimed Gado, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Amr Lotfy Farag,** Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Ain Shams University, for his great help, active participation and guidance.

I am also delighted to express my deepest gratitude and thanks to **Dr. Diaa El Din Moussa Sherif,** Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to my **Thusband and all my family** for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Asmaa Khalaf Ahmed

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	1
Epidemiology of Breast Cancer	5
Risk Factors	
Pathology of Breast Cancer	
□ Staging	
Prognostic Determinant	
Diagnosis	
Triple -ve Breast Cancer	
Treatment of Triple -ve Breast Cancer	
Axillary Lymph Nodes and Breast Cancer	
Axillary Lymph Node Ratio (ALNR)	
Patients and Methods	
Results	
Discussion	
Summary and Conclusion	101
Recommendations	
References	103
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Anatomic Stage/Prognostic groups	30
Table (2):	Age	
Table (3):	Age group	
Table (4):	Menopause	
Table (5):	Sidedness	
Table (6):	Grade	
Table (7):	Surgery	
Table (8):	Tumor size	
Table (9):	Nodal infiltration (N)	
, ,	Removed lymph nodes(RLNS)	
	Negative lymph nodes (NLNs)	
	Pathological Lymh nodes(PLNs)	
	Lymph node ratio (LNR)	
	Protocol	
	Taxane-based	
	Relapse	
	Local relapse only	
	Bone mets only	
	Visceral mets only	
	Bone and visceral mets	
	Local relapse and visceral mets	
	Death	
	Relation between LNR & age	

Tist of Tables (Cont...)

Table No.	Title	Page No.
Table (24):	Relation between LNR & age group	78
Table (25):	Relation between LNR & menopause	78
Table (26):	Relation between LNR & sidedness \dots	79
Table (27):	Relation between LNR & grade	80
Table (28):	Relation between LNR & surgery	81
Table (29):	Relation between LNR & Tumor size $\! \!$	82
Table (30):	Relation between LNR & protocols	83
Table (31):	Relation between LNR & taxane-based	d 84
Table (32):	Relation between LNR & relapse	85
Table (33):	Relation between LNR & local relaps /without Visceral mets	
Table (34):	Relation between LNR & bone mets or	nly 87
Table (35):	Relation between LNR & Visceral met	s only 88
Table (36):	Relation between LNR & bone and v	
Table (37):	Relation between LNR & death	90
Table (38):	Mean and median disease free surviva patients	
Table (39):	Relation between DFS & LNR	92
Table (40):	Mean and median OS of all patients	93
Table (41):	Relation between OS & LNR	94

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Mammogram and MRI Breast Comparison	•
Figure (2):	Disease free survival of all patients.	91
Figure (3):	Disease free survival & LNR	92
Figure (4):	Over all survival of all patients	93
Figure (5):	Over all survival & LNR	94

Tist of Abbreviations

Abb.	Full term
ALNR	Axillary Lymph Nodes Ratio
BRCA1	Breast Cancer Gene One
CNB	Core Needle Biopsy
DCIS	Ductal Carcinoma in Situ
<i>EPT</i>	Estrogen-Progestin Therapy
<i>ER</i>	Estrogen Receptor
ET	
FNAB	Fine Needle Aspiration Biopsy
HER2	Human Epidermal Growth Factor 2
HT	Hormone Therapy
<i>IDC</i>	Infiltrating Ductal Carcinoma
<i>ILC</i>	Infiltrating Lobular Carcinomas
LCIS	Lobular Carcinoma in Situ
<i>LN</i>	Lymph Node
<i>LNR</i>	Lymph Node Ratio
LVI	Lymphatic and Vascular Invasion
<i>M0</i>	Metastatic Disease
MRI	Magnetic Resonance Imaging
NCI	National Cancer Institute
pKi67	Ki67 Protein
PR	Progesterone Receptor
SEER	Surveillance, Epidemiology, and End Results
<i>SLN</i>	Sentinel Lymph Node
	Triple-Negative Breast Cancer

Introduction

Breast cancer is the most common malignant tumor among females around the world and the second common type of malignancies. It represents 1.7 million new cases per year and 25% of all types of cancers (*Balekouzou et al.*, 2016).

According to,(pathological based statistics); 252,710 new cases were diagnosed with breast cancer among women in USA by the end of 2017, also approximately 40, 610 women died from breast cancer in 2017 (*DeSantis et al.*, 2017).

In Egypt, breast cancer is the most common cancer among females. According to, The Egypt National Cancer Institute (NCI); among 10, 556 patients at the end of 2001, breast cancer representing 18.9% of total cancer cases (35.1% in females and 2.2% in males) (*Amal et al.*, 2014).

The molecular classification of breast cancer (luminal, basal-like, HER2-positive enriched and normal-like) was the most important researching issue in the field of breast cancer (*Cheang et al.*, 2015).

The Triple-Negative Breast Cancer (TNBC) subtype representing about 15% of all breast cancers. It characterized by loss of expression of both Estrogen and Progesterone

Receptors and lack of over expression or amplification of the HER2/neu oncogene (*Perou*, 2011).

TNBC often shows a more aggressive course than other molecular subtypes and poorer disease-specific survival with higher rates of recurrence(visceral and central nervous system metastases) (Bianchini et al., 2016).

Axillary lymph node (LN) status is considered one of the most significant prognostic factors in breast cancer, it is mainly depended on the absolute number of involved LNs (Li et al., 2012).

Inadequate lymph nodes dissection may lead to under staging of the axilla so, It has been well established that the number of dissected axillary LNS is an important factor in prognosis of breast cancer (Ahn et al., 2011).

It is generally accepted that adequately assessment of axilla need to more than 10 LNS (National Comprehensive Cancer Network (NCCN), 2015).

Lymph node ratio (LNR) is defined as the number of positive lymph nodes divided by the number of lymph nodes examined (Vinh-Hung et al., 2004).

Many studies reported a large variation in the cutoff points used to differentiate breast cancer patients in risk groups

according to their LNR, Some studies divided the patients into 2 LNR risk groups, whereas others divided them into 3 LNR risk groups (Kim et al., 2013).

In a big study analyzed data of 1, 829 node positive breast cancer patients, they divided patients into 3 LNR risk groups; low-risk [<0.20], intermediate-risk [0.21–0.65], and high-risk [>0.65] LNR groups (Vinh-Hung et al., 2009).

Studies have demonstrated that LNR, which takes into consideration the adequacy of LN dissection, may enhance risk stratification, Some studies reported that the LNR system predicted prognosis better than pN system (using pN1-3 classification), so they suggested that LNR should be considered as an alternative to pN staging (Vinh-Hung et al., 2009; Danko et al., 2010).

In another study, LNR is considered has a better prognostic value than the absolute number of involved axillary LNs (Xiao et al., 2013).

The prognostic value of the LNR has already been well established for other malignancies, including colorectal cancer and pancreatic cancer (Jiang et al., 2019; Elshaer et al., 2019).

AIM OF THE WORK

his is a retrospective study, The primary aim of this study is to assess the disease free survival and overall survival among the study group (non metastatic, triple negative breast cancer patients treated with upfront surgery) in relation to different axillary lymph node ratios.

The secondary objective is to assess the impact of axillary lymph nodes ratio on the pattern of relapse (locoregional and metastatic).