

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Structural Engineering Department

Effect of Vehicle Vibrations on The Dynamic Response of Inclined Bridge Spans

A Thesis Presented by

Osama Mohamed Mohamed Mantawy

B.Sc. of Structural Engineering.

Civil Engineering Department - Ain Shams University,2014 Supervised by:

Prof. Dr. Hisham Ahmed El-Arabaty

Professor of Structural department Faculty of Engineering

Ain Shams University

Dr. Saleh Al-Mekawy	Dr. Nasr Eid Nasr
Assistant Professor of	Associate Professor of
Structural Engineering	Structural Engineering
Ain Shams University	Ain Shams University

Ain Shams University Faculty of Engineering Structural Engineering Department

Effect of Vehicle Vibrations on The Dynamic Response of Inclined Bridge Spans

A Thesis Presented by

Osama Mohamed Mohamed Mantawy

Examiners Committee

Prof. Dr. Hala Mohamed Gamal Eldin Elkady	
Professor of Civil Engineering Department	
National Research Center	
Prof. Dr. Mohammed Nour El-Din Saad Fayed	
Professor of Structural Engineering	
Ain Shams University	
Prof. Dr. Hisham Ahmed El-Arabaty	
Professor of Structural Engineering	
Ain Shams University	
Dr. Nasr Eid Nasr	
Associate Professor of Structural Engineering	
Ain Shams University	

Date: 4/9/2021

1 <u>CURRICULUM VITAE</u>

Name Osama Mohamed Mohamed Mantawy

Date of Birth 23, March 1992

Place of Birth Egypt

Scientific degree B.Sc. of Structural Engineering, Faculty of

Engineering, Ain Shams University, 2014

Current Job Demonstrator of Structural Engineering,

Structural Engineering Department, Faculty

of Engineering, Ain Shams University

2 **STATEMENT**

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Name: Osama Mohamed Mohamed Mantawy
Signature:

Date: 4 /9/ 2021

3 ACKNOWLEDGMENT

First and foremost, thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Prof. Hisham El-Arabaty, Professor of structural engineering, Structural Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication, and encouragement kind supervision.

My grateful appreciation also extends to Dr. Nasr Eid Nasr, Associated Professor of Structural Engineering, and Dr. Saleh AL-Mikawy, Assistant Professor of Structural Engineering, Faculty of Engineering, Ain Shams University, for their fruitful comments and valuable advice throughout this research till its completion which is gratefully acknowledged and sincerely appreciated.

Most important, my deepest thanks and love for my father, mother, brothers, and friends for constant and everlasting support which is the reason for being able to finish this research.

Ain Shams University Faculty of Engineering Department of Structural Engineering

Researcher Name: Osama Mohamed Mohamed Mantawy

Research Title:

Effect of Vehicle Vibrations on The Dynamic Response of Inclined Bridge Spans

ABSTRACT

This research work deals with the problem of the effect of the interaction between the vehicle and bridge on the bridge dynamic response. A software program was modified and used to solve this dynamic problem using the concepts of substructuring and matrix condensation. A complex vehicle model was used to represent the vehicle components very closely.

A parametric study was performed on the Kilo 21 bridge which locates on Alexandrie-Matruh Highway Road to study the effect of different factors affecting the bridge vehicle interaction such as the bridge entrance and exit slopes, bridge continuity, vehicle speed, bridge damping, and the existence of surface irregularities at the bridge entrance and expansion joints with a special emphasis was placed on the effect of the bridge entrance and exit slope

Another design was performed by Author for the kilo 21 bridge to study the effect of the bridge construction type on DAF values. The bridge was designed as steel beams acting with the concrete slab as a composite section and a comparison was made between DAF values for both types of bridge.

The Dynamic Amplification Factors (DAFs) were computed based on the results of the analysis and a comparison was made between DAFs obtained through the analysis and DAFs specified in The Egyptian Code of Practice. Based on this comparison, a number of special considerations were recommended to be taken in the design of bridges under the different studied parameters.

KEYWORDS: Dynamic Response, Vehicle-Bridge interaction, Entrance and Exit Slopes, Dynamic Amplification Factors, Substructuring.

Table of Content

Contents

Chapte	r 1	1
Introdu	ction	1
1.1	General	1
1.2	Objective of the research	2
1.3	Layout of the thesis	2
Chapte	r (2)	4
Literatu	ıre Review	4
Chapte	r (3)	24
Integra	tion Methods	24
3.1	Introduction	24
3.2	Dynamic equation of motion	24
3.3	Step by step integration method	25
3.4	Linear acceleration step by step method	25
3.5	Runge Kutta method	28
3.6	Selection of the numerical analysis technique	30
Chapte	r (4)	31
Bridge	Vehicle Model	31
4.1	Introduction	31
4.2	Vehicle model	32
4.3	Bridge finite element model	36
4.3	Bridge local stiffness matrix	36
4.3	Bridge global stiffness matrix	38
4.3	Bridge stiffness matrix in the banded form	40
4.3	Formulation of the Bridge mass matrix	41
4.3	3.5 Bridge local mass matrix	42
4	3.6 Bridge global mass matrix	43
4.3	Bridge mass matrix in the banded form	46

4.4	Sub-structuring	47
4.5	Condensation	47
4.6	Vehicle bridge combined model	50
4.	6.1 Tire stiffness matrix	51
4.	6.2 Formulation of the combined stiffness matrix	53
4.7	Bridge Response calculations	54
4.	7.1 Stage one displacements	55
4.	7.2 Stage 2 displacements	56
4.	7.3 Stage 3 displacements	58
4.8	Element and node numbering	62
4.9	Simulation of the bridge vertical profile	63
Chapte	or (5)	65
Verific	ration of the Analytical Model	65
5.1	Introduction	65
5.2	Case 1: single static load	65
5.3	Case 2: Constant dynamic force	69
5.4	Case 3: Single Constant dynamic force moving along the	bridge 70
5.5	Case 4: Vehicle with multiple axles moving at high speed	74
Chapte	or 6	86
Parame	etric study	86
6.1	Bridge description	86
6.2	Analysis data	88
6.3	Modal analysis	93
6.4	Analysis results	105
6.5	Steel bridge	133
6.6	Discussion of the results	162
Chapte	or 7	164
Summa	ary and Conclusion	173
7.1	Summary	173
7.2	Conclusion	173
7.3	Suggestion for future work	175

REFERENCES	176

List of Figures

Figure 2-1 Elevation of the studied box girder bridge (Inbanathan 1987)	4
Figure 2-2: Cross section of the studied box girder bridge (Inbanathan 1987	
Figure 2-3: Cross-section of the simple span bridge (Gupta, 1994)	
Figure 2-4: Idealized vehicle model (Gupta 1994)	
Figure 2-5: Cross-section for the steel girder bridge (Hwang 1991)	
Figure 2-6: Vehicle model used by Hwang (1991)	
Figure 2-7: Two axle vehicle model used in Humar and Kashif (1993)	
Figure 2-8: View of walnut creek bridge in Arizona (Zeng, 2003)	
Figure 2-9:Schematic of beam and load model (Brady, 2006)	12
Figure 2-10: Bridge cross-section (Brady, 2006)	
Figure 2-11: 3D analytical model for the vehicle used in (Fafard and	
Laflamme, 1998)	14
Figure 2-12: Vehicle bridge system introduced by Yang (1995)	
Figure 2-13: Bridge cross-section and different load cases (Zou, 2016)	
Figure 2-14: Different vehicle models used throughout the analysis a) Movin	
force b) moving mass c) spring damped mass system	_
Figure 2-15:Cross section of Nguyen-Tri-Phuong Bridge in Vietnam	
(Nguyen-Xuan, 2018)	18
Figure 2-16: Schematic representation for different vehicle models used in	
analysis by Pagnoncelli (2019)	
Figure 2-17: Vehicle model used by (Yin, 2010)	
Figure 2-18: Cross-section of Hoa-Xuan Bridge	
Figure 2-19: Numbering scheme in case of tire separation	
Figure 2-20: Cross section of Waly bridge (Roshdy, 2004)	
Figure 4-1: Free body diagram for the vehicle components	33
Figure 4-2: Displacements relations at the bridge contact points	
Figure 4-3: The bridge response due to various dynamic forces along the	
bridge	56
Figure 4-4: Bridge displacements due to the calculated reactions at the cont	
points	
Figure 4-5: The bridge response due to various dynamic forces along the	
bridge while applying imaginary reactions at contact points	58
Figure 4-6: Bridge response due to the reactions calculated from the combin	
model	
Figure 4-7: Node numbering in case of continuous spans	
Figure 4-8: Node numbering in case of simple spans	
Figure 4-9: Equivalent Vertical forces due to the effect of bridge profile	

Figure 5-1: Mid-span deflection with the change in load position along the	
bridge Using the vehicle-bridge model	67
Figure 5-2: Bending moment at the load position Using the vehicle-bridge	
model	67
Figure 5-3: Mid-span deflection with the change in load position along the	
bridge Using the classical analysis methods	68
Figure 5-4: Bending moment at the load position Using the classical analysis	is
method	
Figure 5-5: Mid-span deflections (Case of a single dynamic load acting at	
mid-span)	70
Figure 5-6: History of mid-span deflection due to a moving dynamic load	
using the interaction model	72
Figure 5-7: History of mid-span deflection due to a moving dynamic load	
using the classical analysis method according to (Biggs 1964)	73
Figure 5-8: History of mid-span deflection due to a moving dynamic load	
from the interaction model and using the classical analysis	73
Figure 5-9: Profile of the bump inserted to the bridge model at midspan	75
Figure 5-10: History of vertical deflection at (FQ) obtained by El-	
Badrawy(2002)	77
Figure 5-11: History of vertical deflection at (FQ) obtained by Authors	77
Figure 5-12: History of bending moment at (FQ) obtained by El-	
Badrawy(2002)	78
Figure 5-13: History of bending moment at (FQ) obtained by Authors	78
Figure 5-14:History of vertical deflection at midspan obtained by El-	
Badrawy(2002)	79
Figure 5-15: History of vertical deflection at midspan obtained by Authors.	79
Figure 5-16: History of bending moments at midspan obtained by El-Badra	wy
(2002)	80
Figure 5-17: History of bending moments at midspan obtained by Authors.	80
Figure 5-18: History of vertical deflection at (LQ) obtained by El-Badrawy	
(2002)	81
Figure 5-19: History of vertical deflection at (LQ) obtained by Authors	81
Figure 5-20: History of bending moments at (LQ) obtained by El-Badrawy	
(2002)	82
Figure 5-21: History of bending moments at (LQ) obtained by Authors	82
Figure 5-22: History of force in axle (A) obtained by El-Badrawy (2002)	83
Figure 5-23: History of force in axle (A) obtained by authors	83
Figure 5-24: History of force in axle (B) obtained by El-Badrawy (2002)	84
Figure 5-25: History of force in axle (B) obtained by authors	84
Figure 5-26: History of force in axle (C) obtained by EL-Badrawy (2002)	
Figure 5-27: History of force in axle (C) obtained by authors	85
Figure 6-1: Longitudinal profile for Al Kilo-21 bridge	86