

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Association of serum Zinc Level and Clinical Outcome in Patients with COVID19 Virus

Thesis

Submitted For Partial Fulfillment of Master Degree in Internal Medicine

By

Norhan Khaled Mohamed Kamal

M.B.B. Ch-Faculty of Medicine Ain Shams University

Under supervision of

Prof. Dr. Noha Abd Elrazek El Nakeeb

Professor of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed ElGhandour

Lecturer of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Ahmed Magdy Fathallah

Lecturer of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to *Prof. Dr. Noha Abdelrazeq Alnaqeeb*, Professor of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Ahmed Mohamed ElGhandour, Lecturer of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to *Dr. Ahmed Magdy Fathallah*, Lecturer of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

Norhan Khaled

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction	1
Aim of the Work	3
Review of Literature	
Corona Virus	4
Zinc	44
Zinc and COVID-19	52
Patients and Methods	58
Results	61
Discussion	71
Summary	80
Conclusion	83
Recommendations	84
References	85
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACE2	Angiotensin-converting enzyme 2
	Activation-induced cell death
	Antigen-presenting cells
	Acute respiratory distress syndrome
AT	
BAL	Bronchioalveolar lavage
	Corona virus disease- 2019
CP	Convalescent plasma
CRP	C-reactive protein
CT	Computed tomography
CTLs	Cytotoxic T lymphocytes
DIC	Disseminated intravascular coagulation
DNA	Deoxyribonucleic acid
DVT	Deep vein thrombosis
ECMO	Extra corporeal membrane oxygenation
ELISA	Enzyme-linked immunosorbent assay
ERGIC	Endoplasmic reticulum-golgi intermediate compartment
ESR	Erythrocyte Sedimentation Rate
EV	Epidermodysplasia verruciformis
FDP	Fibrin degradation product
G-CSF	Granulocyte colony-stimulating factor
GI	Gastrointestinal
HFNC	High flow nasal cannula
HIV	Human immunodeficiency virus
HPV	Human papilloma virus

List of Abbreviations cont...

Abb.	Full term
ICU	Intensive care unit
	Interferon-alpha
-	Immunoglobulin- G
C	Immunoglobulin-M
IL-6	_
IMV	Invasive mechanical ventilation
IRFs	Interferon regulatory factors
ISGs	Interferon-stimulated genes
LDH	Lactate dehydrogenase
MAP	Mean arterial pressure
MAVS	Mitochondrial antiviral-signalling protein
MDA5	Melanoma differentiation-associated gene 5
MHC	Major histocompatibility complexes
NF-κB	Nuclear factor-κB
NIH	National Institutes of Health
NIPPV	Non-invasive positive pressure ventilation
NK	Natural killer
NP	Nasopharyngeal
OP	Oropharyngeal
PD1	Programmed cell death protein 1
PPE	Personal protective equipment
PRRs	Pattern recognition receptors
PT	Prothrombin time
PT	Pyrithione
RBD	Receptor-binding domain
RDA	Recommended dietary allowance

List of Abbreviations cont...

Abb.	Full term
RER	Rough endoplasmic reticulum
	Retinoic acidinducible gene I
RT-PCR	Reverse-transcription polymerase chain reaction
SARS-CoV-2	Severe acute respiratory syndrome coronavirus-2
SIC	Sepsis-induced coagulopathy
TH	T helper
TIM3	T cell immunoglobulin mucin-3
TLR	Toll-like receptors
TNF	Tumour necrosis factor
TOM70	The outer mitochondrial membrane 70
VTE	Venous thromboembolism
WBC	White blood cell count
WHO	World Health Organization
Zn	Zinc

List of Tables

Table No.	Title	Page No.
Table (1) :	Distribution of the studied cases according Admission	
Table (2):	Distribution of the studied cases according to S	Sex61
Table (3):	Distribution of the studied cases according Special habits	•
Table (4) :	Distribution of the studied cases according Medical history	O
Table (5) :	Distribution of the studied cases according RADS classification	•
Table (6):	Comparison between Ward and ICU re Basic Patient Demographic	0
Table (7) :	Descriptive Statistics of the studied according to Different laboratory investig	
Table (8) :	Comparison between Ward and ICU re Zinc level	0
Table (9):	Comparison between Ward and ICU regard Lymphocytes, Neutrophils, Hemoglobin, Neutrophil- Lymphocyte ratio, CRP, ESR, Creatinine, AST, ALT, Total Bilirubin, S. FERRITIN, LDH, D-DIMER and VIT D	Platelets, BUN, S. Albumin,
Table (10):	Relation between zinc level and sex, habits, medical history and C classification	special CO-RADS
Table (11):	Correlation between Zinc level With A Lymphocytes, Neutrophils, Hemoglobin, Neutrophil- Lymphocyte ratio, CRP, ESR, Creatinine, AST, ALT, Total Bilirubin, S. FERRITIN, LDH, D-DIMER and VIT D	Platelets, BUN, S. Albumin,

List of Figures

Fig. No.	Title	Page No.
Figure (1):	SARS-CoV-2 structure. Viral structure protein components and viral RNA	
Figure (2):	Distribution of the studied cases Medical history	O
Figure (3):	Distribution of the studied cases CO-RADS classification	O

INTRODUCTION

As the whole world is grappling with corona virus disease- 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), there is a frantic race for finding treatment regimens based on current knowledge until effective vaccine and drugs are developed. Indeed, therapeutic approaches against COVID-19, mostly centered on the management of its immunopathology and/or tailored to directly control viral replication, are for now based on off-label prescription. Several human trials are currently in progress to assess the therapeutic indexes of drugs already approved for other diseases (i.e., drug repurposing), and in combination with dietary supplements like vitamin C, vitamin D, vitamin B12, probiotics, and zinc (Zn) (Maret, 2013).

Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common. The global prevalence of zinc deficiency is estimated to range from ~17% to 20% (Wessells and Brown, 2012; Kumssa et al., 2015), with the vast majority occurring in developing countries of Africa and Asia.

Zn is a common theme in both prophylactic and curative COVID-19 clinical studies using nutritional supplements.

Zn, the second most abundant trace metal in the human body after iron, is essential for multiple cellular functions including maintenance of immune health. Importantly, Zn also plays a critical role in antiviral immunity (Gupta et al., 2019; Read et al., 2019).

AIM OF THE WORK

The aims of this study is to assess Possible association between mean levels of Zinc in the patients and clinical outcome caused by COVID-19.