

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





# Estimation of the prognostic value of plasma ADAMTS-13 in covid-19 patients

#### Thesis

Submitted for the Fulfilment of M.Sc degree in Clinical Hematology

By

#### **Arwa Atef Mohamed Elhefnawy**

M.B.B.Ch. Menoufia University

Under supervision of

#### Prof. Dr. Essam Abdelwahed Hassan

Professor of internal medicine and clinical Hematology
Faculty of Medicine, Ain Shams University

#### Dr. Nermeen Adel Nabih

Assistant professor of internal medicine and clinical Hematology Faculty of Medicine, Ain Shams University

## Dr. Haydi Sayed Mohamed

Assistant Professor of internal medicine and clinical Hematology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo
2021

# List of Contents

|                                          | Page No. |
|------------------------------------------|----------|
| List of abbreviations                    | I        |
| List of tables                           | IV       |
| List of figures                          | V        |
| 1. Introduction                          | 1        |
| 2. Aim of the work                       | 3        |
| 3. Review of literature                  | 4        |
| 3.1. Chapter One: COVID-19               | 4        |
| 3.2. Chapter Two: ADAMTS-13 and Covid-19 | 59       |
| 4. Patients and methods                  | 68       |
| 5. Results                               | 73       |
| 6. Discussion                            | 83       |
| 7. Conclusions & Recommendations         | 89       |
| 8. Summary                               | 91       |
| 9. References                            | 92       |
| Arabic summary                           | -        |

# List of Abbreviations

| ACE          | Angiotensin converting-enzyme              |
|--------------|--------------------------------------------|
| ADAMTS13     | A disintegrin and metalloproteinase with a |
|              | thrombospondin type 1 motif, member 13     |
| AFOP         | Acute fibrinous and organizing pneumonia   |
| ALT          | Alanine aminotransferase                   |
| APTT         | Activated partial thromboplastin time      |
| ARDS         | Adult respiratory distress syndrome        |
| <b>ASH</b>   | American Society of Hematology             |
| <b>AST</b>   | Aspartate aminotransferase                 |
| <b>BiPAP</b> | Bilevel positive airway pressure           |
| CBC          | Complete blood count                       |
| CCL          | C-C motif chemokine ligand                 |
| CD           | Cluster differentiation                    |
| CORADS       | The coronavirus disease 2019 (COVID-19)    |
| COKADS       | Reporting and Data System                  |
| CoV          | Coronavirus                                |
| COVID-19     | Coronavirus disease of 2019                |
| <b>CPAP</b>  | Continuous positive airway pressure        |
| CQ           | Chloroquine                                |
| CRP          | C-reactive protein                         |
| CSF          | Cerebrospinal fluid                        |
| CT           | Computed tomography                        |
| CXCL         | Chemokine (C-X-C motif) ligand             |
| DAD          | Diffuse alveolar damage                    |
| DIC          | Disseminated intravascular coagulation     |
| DNA          | Deoxyribonucleic acid                      |
| <b>DOACs</b> | Direct oral anticoagulants                 |
| <b>ELISA</b> | Enzyme-linked immunosorbent assay          |
| <b>FDA</b>   | Food & Drug Administration                 |
| <b>FDP</b>   | Fibrin degradation products                |
| FiO2         | Fraction of inspired oxygen                |
| GBS          | Guillain-Barré Syndrome                    |

| GGO          | Ground-glass opacity                             |
|--------------|--------------------------------------------------|
| GI           | Gastrointestinal                                 |
| GM-CSF       | Granulocyte macrophage colony stimulating factor |
| GP           | Glycoprotein                                     |
| HCoV-NL63    | Human coronavirus NL63                           |
| <b>HFNO</b>  | High flow nasal oxygen                           |
| Hg           | Hemoglobin                                       |
| HIV          | Human immunodeficiency virus                     |
| HLH          | Haemophagocytic lymphohistiocytosis              |
| HRCT         | High-resolution computed tomography              |
| HUS          | Hemolytic uremic syndrome                        |
| <i>ICU</i>   | Intensive Care Unit                              |
| IL           | Interleukin                                      |
| <b>IMV</b>   | Invasive mechanical ventilation                  |
| INF          | Interferon                                       |
| INR          | International normalized ratio                   |
| <i>IP-10</i> | Interferon-Inducible Protein 10                  |
| ISTH         | International Society on Thrombosis and          |
| 131 H        | Haemostasis                                      |
| JAK          | Janus kinase                                     |
| LDH          | Lactate dehydrogenase                            |
| LMWH         | Low-molecular-weight heparin                     |
| MERS         | Middle East respiratory syndrome coronavirus     |
| mRNA         | messenger ribonucleic acid                       |
| MSOF         | Multisystem Organ Failure                        |
| NP           | Nasopharyngeal                                   |
| PEEP         | Positive end expiratory pressure                 |
| PHEIC        | Public Health Emergency of International Concern |
| PLT          | Platelets                                        |
| P-SILI       | Patient self-inflicted lung injury               |
| PT           | Prothrombin time                                 |
| RDRP         | RNA-dependent RNA polymerase                     |
| RNA          | Ribonucleic acid                                 |
| RR           | Respiratory rate                                 |

| RT-PCR       | Reverse transcriptase polymerase chain reaction |  |  |
|--------------|-------------------------------------------------|--|--|
| SARS         | Severe acute respiratory syndrome               |  |  |
| SD           | Standard deviation                              |  |  |
| sHLH         | Secondary or acquired haemophagocytic           |  |  |
| SHLH         | lymphohistiocytosis                             |  |  |
| TCZ          | Tocilizumab                                     |  |  |
| TGF-β        | Transforming growth factor beta                 |  |  |
| TLC          | Total leucocytic count                          |  |  |
| <i>TMAs</i>  | Thrombotic microangiopathies                    |  |  |
| <b>TNF</b>   | Tumour necrosis factor                          |  |  |
| TPE          | Therapeutic Plasma Exchange                     |  |  |
| TTP          | Thrombotic thrombocytopenic purpura             |  |  |
| UFH          | Unfractionated heparin                          |  |  |
| UL-vWF       | UL- vWF ultra-large von Willebrand factor       |  |  |
| <b>VKA</b> s | Vitamin K Antagonists                           |  |  |
| VTE          | Venous thromboembolism                          |  |  |
| vWF          | von Willebrand factor                           |  |  |
| WHO          | World Health Organization                       |  |  |

# List of Tables

| Table | Title                                                                                        | Page |
|-------|----------------------------------------------------------------------------------------------|------|
| 1     | H Score for secondary HLH, by clinical parameter                                             |      |
| 2     | CORADS scale (COVID-19 Reporting and Data System)                                            | 32   |
| 3     | Demographic and clinical data of included patients                                           | 73   |
| 4     | Laboratory data of the included patients                                                     | 74   |
| 5     | Comparison of ADAMTS-13 level in included patients                                           | 75   |
| 6     | Comparison of ADAMTS-13 according to age and                                                 |      |
|       | laboratory data                                                                              |      |
| 7     | Comparison of ADAMTS-13 high and low expressors according to age and laboratory data         |      |
| 8     | Correlation of ADAMTS-13 levels with age and laboratory data of patients                     |      |
| 9     | Comparison of low and normal ADAMTS-13 with gender, clinical data and final outcome          |      |
| 10    | Comparison of ADAMTS-13 levels with gender, clinical data and final outcome                  | 81   |
| 11    | Comparison of ADAMTS-13 high and low expressors with gender, clinical data and final outcome | 82   |

# List of Figures

| Fig. | Title                                                      | Page |
|------|------------------------------------------------------------|------|
| 1    | Coronaviruses electron microscope                          | 5    |
| 2    | Pathophysiology of SARS-CoV-2 systemic infection           | 12   |
| 3    | Mechanisms of coagulation activation in Covid-19           | 19   |
| 4    | Comparison of ADAMTS-13 level in included patients         |      |
| 5    | ROC curve analysis of ADAMTS-13 level in included patients | 76   |

#### Introduction

Von Willebrand factor (vWF), a glycoprotein critical for supporting platelet adhesion and aggregation at sites of vessel injury, exists in the plasma as a series of multimers. The platelet-tethering function of von Willebrand factor (VWF) is proteolytically regulated by ADAMTS13) a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) which cleaves the Tyr1605-Met1606 (P1-P1') bond in the VWF A2 domain (*Xiang et al.*, *2011*).

ADAMTS13 deficiency allows unchecked thrombus growth to cause microangiopathic hemolysis, thrombocytopenia, and tissue infarction. At present, ADAMTS13 deficiency with a high-titer inhibitor level appears to be associated with an increased risk of early death and subsequent relapse. If ADAMTS13 is absent, VWF-dependent platelet accumulation continues, eventually causing microvascular thrombosis and TTP (*Plautz et al.*, *2018*).

The decreased activity of ADAMTS13 can be seen not only in TTP, but also in metastatic malignancy or after surgery. It has been reported that a complete lack of ADAMTS13 in mice results in a prothrombotic phenotype. In addition, the decreased activity of ADAMTS13 in patients with acute systemic inflammation suggests a relationship between inflammation and ADAMTS13 deficiency (*Kedar et al.*, 2018).

Coronavirus disease of 2019 (COVID-19) is the clinical manifestation of the respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (*Katneni et al.*, 2020). Patients with COVID-19 often present with dyspnea, hypoxemia, and hemodynamic instability with acute respiratory distress syndrome (ARDS), and in such clinical condition, venous thromboembolism (VTE) may be overlooked (**Iba** *et al.*, 2020).

Severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019 (COVID-19)-induced infection can be associated with a coagulopathy, findings consistent with infection-induced inflammatory changes as observed in patients with disseminated intravascular coagulopathy (DIC) (Connors & Levy, 2020).

Severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 frequently induces hypercoagulability with both microangiopathy and local thrombus formation, and a systemic coagulation defect that leads to large vessel thrombosis and major thromboembolic complications, including pulmonary embolism in critically ill hospitalized patients. d-dimers and fibrinogen levels should be monitored, and all hospitalized patients should undergo thromboembolism prophylaxis with an increase in therapeutic anticoagulation in certain clinical situations (**Iba** et al., 2020).

### Aim of the work

The aim of this study was to measure the plasma level of ADAMTS-13 in covid-19 patients and to correlate it's level with the prognosis of the disease and the clinical outcome of the patients.

## **Chapter One: Covid-19**

Coronavirus is one of the major pathogens that primarily target the human respiratory system. Previously outbreaks of coronaviruses (CoVs) include the severe acute respiratory syndrome (SARS)-CoV and the Middle East respiratory syndrome (MERS)-CoV which have been characterized as agents that are a great public health threat. In late December 2019, a cluster of patients was admitted to hospitals with an initial diagnosis of pneumonia of an unknown etiology. These patients were epidemiologically linked to a seafood and wet animal wholesale market in Wuhan, Hubei Province, China (*Rothan & Byrareddy*, 2020).

According to the World Health Organization (WHO) February 2020, there had been >51,000 confirmed cases globally, leading to at least 1600 deaths. The emerging pathogen was rapidly characterized as a new member of the beta-coronavirus genus, closely related to several bat coronaviruses and to severe acute respiratory syndrome coronavirus (SARS-CoV) (*Lu et al.*, 2020), (*Wu et al.*, 2020).

Coronavirus is discovered for the first time in the 1960s. Coronaviridae are a family of enveloped positive-sense single-stranded ribonucleic acid (RNA) viruses. The genome size of this viral group ranges between 27 and 34 kilobases, which is larger than most other RNA viruses (*Sexton et al.*, *2016*). The name Coronavirus originates from the Latin word corona, meaning "crown" or "halo",

due to its characteristic appearance under two-dimensional transmission electron microscopy. Coronaviruses have club-shaped spike peplomers covering their surfaces (**Figure 1**) (*Chorba*, 2020).

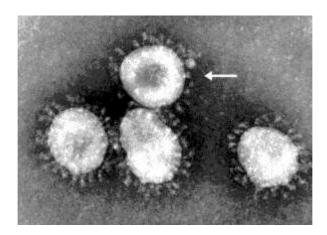



Figure (1): Coronaviruses electron microscope (Valencia, 2020)

The 2019, CoV has a different coronavirus specific nucleic acid sequence from known human coronavirus species, which are similar to some of the beta coronaviruses identified in bats. The virus specific nucleic acid sequences were detected in lung fluid, blood and throat swab samples in 15 patients and the virus that was isolated showed a typical coronavirus appearance under electron microscopy. Further research will be conducted to better understand the new coronavirus to develop antiviral agents and vaccines (*Lu et al.*, 2020).

The current emergence of COVID-19 is the third CoV outbreak in humans over the past 2 decades (*Dhama et al.*, *2020*). Initial clinical and laboratory results focused on several known agents of respiratory illness, including human meta-pneumovirus, influenza