

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

THE VALUE OF NEUTROPHIL-TO-MONOCYTEPLUS-LYMPHOCYTE RATIO AS A MARKER FOR DISCRIMINATING PULMONARY TUBERCULOSIS FROM PNEUMONIA

Thesis

Submitted for Partial Fulfillment of Master Degree In Chest Diseases

By Effat Abo Bakr Mohammed Ali

M.B.B.Ch
Faculty of Medicine, Ain Shams University

Supervised by

Prof. Emad Eldin Abdelwahab Koraa

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Prof. Nehad Mohammed Osman

Professor of Chest Diseases
Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2021

Acknowledgement

Thanks first and last to ALLAH, the real support and the guidance in every step in our life.

I would like to express my sincere gratitude and deepest appreciation to **Prof. Emad Eldin Abdelwahab Koraa**, **Professor of Chest Diseases**, **Faculty of Medicine**, **Ain Shams University.** He patiently gave me much of his time, experience, Kindness, knowledge, directions, supervision and support throughout this work that cannot be expressed by words.

I wish to extend my deep thanks and appreciation to Prof. Nehad Mohammed Osman, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for her kind supervision. Her encouragement and valuable advices are the major causes that helped me to finish this work.

Special thanks to all patients on whom and for whom this work has been done and without them it was never going to appear.

No words can describe the support and the encouragement of my lovely wife & all my family, especially my caring and loving parents who enlighten my life.

Effat Abo Bakr Mohammed Ali

List of Contents

Ti	Title P	
•	List of Abbreviations	. I
•	List of Tables	. IV
•	List of Figures	. V
•	Introduction	. 1
•	Aim of the Work	. 4
•	Review of Literature	
	- Chapter (1): Tuberculosis	. 5
	- Chapter (2): Pneumonia	. 24
	- Chapter (3): Biomarker in TB and	
	Pneumonia	. 36
•	Subjects and Methods	. 48
•	Results	. 54
•	Discussion	.71
•	Summary	. 83
•	Conclusion	. 87
•	Recommendations	. 88
•	References	. 89
•	Arabic Summary	

List of Abbreviations

Abb.	Full term
AFB	Acid fast bacilli
APCs	Antigen-presenting cells
AUC	Area under the curve
BAL	Bronchoalveolar lavage
BCG	Bacillus Calmette-Guérin
BMJ	British medical journal
CAP	Community-acquired pneumonia
CBC	Complete blood count
CFP	Culture filtrate protein
COPD	Chronic obstructive pulmonary disease
CPD	Cigarettes per day
CRP	C-reactive protein
CT	computed tomography
DOTS	Directly observed treatment short-course
ELISA	Enzyme linked immunosorbent assay
ESAT	Early secretory antigen
ESR	Erythrocyte sedimentation rate
FNAB	Fine needle aspiration biopsy
нв	Heamoglobin
ню	Health insurance organization
HPLC	High performance liquid chromatography
IFN	Interferon
IGRAs	Interferon-γ release assays
ILCs	Innate lymphoid cells
iNKT	Invariant natural killer T

List of Abbreviations (Continued)

Abb.	Full term
IU	International units
ко	Knockout
L.J	Lowenstein–jensen
LRTI	Lower respiratory tract infections
MAIT	Mucosa-associated invariant T
MDR	Multidrug resistant
MDR-TB	Multiple drug-resistant tuberculosis
MGIT	Mycobacteria growth indicator tube
MHC	Major histocompatibility complex
MLN	Mediastinal lymph node
MLR	Monocyte to lymphocyte ratio
MTB	Mycobacterium tuberculosis
NK	Natural killer
NLR	Neutrophil to lymphocyte ratio
NMLR	Neutrophil-to-Monocyte-Plus-
	Lymphocyte Ratio
NO	
NPV	Negative predictive value
NTP	National tuberculosis control program
PAMPS	Pathogen-associated molecular patterns
PCT	Procalcitonin
PLR	Platelet-to-lymphocyte ratio
PLT	Platelet
PPD	Purified protein derivative
PPV	Positive predictive value

List of Abbreviations (Continued)

Abb.	Full term
PRRs	Pattern recognition receptors
QFT-Gold	Quanti FERON-TB Gold assay
RBCs	Red blood cells
RCTs	Randomized controlled trials
RLS	Restless legs syndrome
ROC-curve	Receiver operating characteristic curve
Rpf	Resuscitation-promoting factor
SD	Slandered deviation
suPAR	Soluble urokinase type plasminogen activator receptor
TA	Toxin-antitoxin
ТВ	Tuberculosis
TLC	Total leucocytes count
TLRs	Toll-like receptors
TST	Tuberculin skin test
wcc	White cell count
XDR-TB	Extensively drug-resistant tuberculosis
ZN	Ziehl Neelsen

List of Tables

Table No.	Title	Page
Table (1):	Clinical characteristics of the studied groups	54
Table (2):	The most Presenting symptoms in pneumonia and tuberculosis groups	56
Table (3):	Radiological (X-ray) finding in pneumonia and tuberculosis groups	57
Table (4):	Comparisons of Complete blood count (CBC) finding and its differential in the studied groups	58
Table (5):	Comparison between the studied groups as regard inflammatory biomarkers level in the studied group	62
Table (6):	The Correlation of NMLR and NLR with other inflammatory biomarkers	65
Table (7):	The ability of NLR, NMLR, CRP and ESR in prediction of pneumonia	67
Table (8):	The ability of NLR, NMLR, CRP and ESR in prediction of TB	68

List of Figures

Figure No.	Title Pag	ge
Fig. (1):	Age distribution in the studied groups	5
Fig. (2):	Sex distribution in the studied groups	5
Fig. (3):	Total leucocytes count (TLC) (10 ⁹ /L) level in studied groups)
Fig. (4):	Hemoglobin (HB) (g/dL) level in the studied group)
Fig. (5):	Platelet (PLT)(10 ⁹ /L) level in the studied groups)
Fig. (6):	Neutrophil (10 ⁹ /L) level in the studied groups)
Fig. (7):	Monocyte (10 ⁹ /L) level in studied group	1
Fig. (8):	Lymphocyte (10 ⁹ /L) level in the studied group	1
Fig. (9):	CRP (mg/dl) in studied group63	3
Fig. (10):	ESR (mm/hr) in studied groups 63	3
Fig. (11):	NLR in studied group64	1
Fig. (12):	NMLR in studied group 64	1
Fig. (13):	Correlation between CRP, NMLR and NLR	5
Fig. (14):	Correlation between ESR, NMLR and NLR66	5

List of Figures (Continued)

Figure No.	Title	Page
Fig. (15):	ROC curve of NLR, NMLR, CRP and ESR in bacterial CAP group	
Fig. (16):	ROC curve of NLR in tuberculous group	
Fig. (17):	ROC curve of NMLR in tuberculous group	
Fig. (18):	ROC curve of CRP and ESR in tuberculous group	

INTRODUCTION

Tuberculosis (TB) is an infectious disease usually caused by Mycobacterium tuberculosis (MTB) bacteria. Tuberculosis generally affects the lungs, but can also affect other parts of the body. Most infections do not have symptoms, in which case it is known as latent tuberculosis. About 10% of latent infections progress to active disease which, if left untreated, kills about half of those affected (WHO, 2016). The classic symptoms of active TB are a chronic cough with blood-containing mucus, fever, night sweats, and weight loss. It was historically called "consumption" due to the weight loss. Infection of other organs can cause a wide range of symptoms (Dolin et al., 2010).

Tuberculosis is spread through the air when people who have active TB in their lungs cough, spit, speak, or sneeze (CDC, 2016). People with latent TB do not spread the disease. Active infection occurs more often in people with HIV/AIDS and in those who smoke. Diagnosis of active TB is based on chest X-rays, as well as microscopic examination and culture of body fluids. Diagnosis of latent TB relies on the tuberculin skin test (TST) or blood tests (Konstantinos, 2010).

Prevention of TB involves screening those at high risk, early detection and treatment of cases, and vaccination with the bacillus Calmette-Guérin (BCG) vaccine (*Harris and Randol 2013; Hawn et al., 2014*). Those at high risk include household, workplace, and social contacts of

-Introduction

people with active TB (WHO, 2008). Treatment requires the use of multiple antibiotics over a long period of time. Antibiotic resistance is a growing problem with increasing rates of multiple drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (WHO, 2016).

Pneumonia is an inflammatory condition of the lung affecting primarily the small air sacs known as alveoli *(McLuckie, 2009; Jeffrey, 2010)*. Typically symptoms include some combination of productive or dry cough, chest pain, fever, and trouble breathing. Severity is variable *(Roudsari et al., 2020)*.

Pneumonia is usually caused by infection with viruses or bacteria and less commonly by other microorganisms, certain medications and conditions such as autoimmune diseases (McLuckie, 2009; Jeffrey, 2010). Risk factors include cystic fibrosis, chronic obstructive pulmonary disease (COPD), asthma, diabetes, heart failure, a history of smoking, a poor ability to cough such as following a stroke, and a weak immune system (NHLBI, 2011a). Diagnosis is often based on the symptoms and physical examination. Chest X-ray, blood tests, and culture of the sputum may help confirm the diagnosis (NHLBI, 2011b). The disease may be classified by where it was acquired with community, hospital, or health care associated pneumonia (NHLBI, 2011c).

Vaccines to prevent certain types of pneumonia are available (NHLBI, 2011c) other methods of prevention