

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Use of Lactate Clearance as a Predictor of Mortality Rate after Initial Resuscitation in Patient with Severe Sepsis or Septic Shock

Thesis

Submitted for Partial Fulfillment of Master Degree
In Intensive Care

By Noha Mohammed Abdellah Aboassal M.B.B.Ch.

Under Supervision of

Prof. Dr. Bassem Boulos Ghobrial

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Sahar Mohamed Talaat

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine -Ain Shams University

Dr. Karim Ahmed Sedky

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgement

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life...

I would like to express my sincere appreciation and my deep gratitude to Prof. Dr. Bassem Boulos Ghobrial, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University for his valuable advises and support through the whole work and for dedicating much of his precious time to accomplish this work. I would like to express my sincere appreciation and my deep gratitude to Dr. Sahar Mohamed Talaat, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University sincere efforts, fruitful encouragement and guidance. I am deeply thankful and indebted to Dr. Karim Ahmed Sedky, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University for his great help and guidance through the whole work.

No words could adequately express my deep appreciation to My Family for their continuous support and guidance. I shall remain indebted to them all my life.

Noha Aboassal

Contents

Page No.	Title
List of Abbreviations	1
List of Tables	IV
List of Figures	VI
Introduction	1
Aim of the Work	4
Chapter (1): Overview on Sepsis	5
Chapter (2): Lactic Acidosis	37
Patients and Methods	48
Results	54
Discussion	79
Summary	91
Conclusion	93
Recommendations	94
References	95
Arabic Summary	

List of Abbreviations

List of Abbreviations &

Abb.	Full term
ICU	Intensive care unit
IgG	Immunoglobulin G
IL-6	Interleukin-6
iNOS	Inducible nitric oxide synthase
KD	Dissociation constant
LPS	Lipopolysaccarides
MAC	Membrane attack complex
MAP	Mean arterial pressure
MELD	Model for end stage liver disease
MOF	Multi organ failure
MW	Molecular weight
NO	Nitric oxide
PAM	Peptidylglycine alpha-amidating monooxygenase
PAMPs	Pathogen-associated molecular patterns
PCT	Procalcitonin
CT	Calcitonin
PN	Parenteral nutrition
PPIs	Proton pump inhibitors
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
RRT	Renal replacement therapy
ScvO ₂	Central venous oxygen saturation
SIRS	Systemic inflammatory response syndrome
SOFA	Sepsis-related Organ Failure assessment

List of Abbreviations &

Abb.	Full term
SPSS	Statistical Package for the Social Science
SSC	Surviving sepsis campaign
TLC	Total leucocytic count
TLR	Toll like receptor
TNF	Tumor necrosis factor

List of Figures

Figure No.	Title Page	No.
		4.0
Figure (1):	Pathogenesis of severe sepsis	13
Figure (2):	Signal transducon of vasopressin analogues on V1 receptors invascular smooth muscle cells	27
Figure (3):	Effects of vasoactive catecholamines on pressure and blood flow	29
Figure (4):	Glycolytic pathway and tricarboxylic acid (Krebs) cycle	38
Figure (5):	The Cori cycle: glucose	39
Figure (6):	Comparison between the survivors and the non survivors according to past history	55
Figure (7):	Comparison between the survivors and the non survivors according to vital signs	57
Figure (8):	Box plot between the survivors and the non survivors according to GCS	59
Figure (9):	Comparison between the survivors and the non survivors according to source of sepsis	62
Figure (10):	Comparison between the survivors and the non survivors according to vasopressor	64
Figure (11):	Comparison between the survivors and the non survivors according to vasopressor duration	65
Figure (12):	Box plot between the survivors and the non survivors according to SOFA score	66

List of Figures (Cont'd)

Figure No.	Title Po	ige No.
Figure (13):	Comparison between the survivors a the non survivors according to lactalevel (mmol/L)	00
Figure (14):	Comparison between the survivors a the non survivors according to lact clearance	00
Figure (15):	Relation between lactate clearance after 24 hours and morality	ter 70
Figure (16):	Relation between lactate clearance after 24 hours and vasopressor	ter 72
Figure (17):	Relation between lactate clearance after 24 hours and vasopressor time (days)	ter 73
Figure (18):	Relation between lactate clearance aft 24 hours and ventilation	ter 74
Figure (19):	Relation between lactate clearance after 24 hours and ventilation days	ter 75
Figure (20):	Relation between lactate clearance after 24 hours and hospital stay (days)	ter 76
Figure (21):	Box plot between lactate clearance aft 24 hours and SOFA score	ter 78

List of Tables

Table No.	Title	Page	No.
Table (1):	The SOFA score		8
Table (2) :	The incidence of primary infection	site of	10
Table (3):	Predisposing factors for sepsis		11
Table (4) :	Primary lactate Producing/Contissues under normal conditions	suming	40
Table (5):	Comparison between the survivors the non survivors according demographic data		54
Table (6) :	Comparison between the survivors the non survivors according thistory		55
Table (7):	Comparison between the survive the non survivors according to signs		57
Table (8) :	Comparison between the survive the non survivors according to G		59
Table (9) :	Comparison between the survive the non survivors according to C		60
Table (10):	Comparison between the survive the non survivors according to A		61
Table (11):	Comparison between the survivors the non survivors according to of sepsis		62

List of Tables (Cont'd)

Table No.	Title Page	No.
Table (12) :	Comparison between the survivors and the non survivors according to vasopressor	64
Table (13) :	Comparison between the survivors and the non survivors according to SOFA score	66
Table (14):	Comparison between the survivors and the non survivors according to lactate level (mmol/L)	67
Table (15):	Relation between lactate clearance after 24 hours and morality	70
Table (16) :	Relation between lactate clearance after 24 hours and vasopressor	72
Table (17) :	Relation between lactate clearance after 24 hours and ventilation	74
Table (18) :	Relation between lactate clearance after 24 hours and hospital stay (days)	76
Table (19):	Relation lactate clearance after 24 hours and SOFA score	78

Abstract

Background: Early diagnosis of sepsis is the key for improving the survival. Culture is the diagnostic tool but the microbiological origin of infection is demonstrated in about 2/3rd of cases. Biomarkers have an important place in this process because they can indicate the presence or absence of sepsis and they are also important in evaluating the response to therapy and recovery from sepsis.

Aim of the work: to find a correlation between the lactate clearance and mortality in patients with severe sepsis.

Patients and Methods: The study was conducted on 60 adult critically ill patients of both sexes with severe sepsis, who were admitted to the unit of Critical Care Unit in Ain Shams University Hospital. All participants were subjected to the following: detailed history, full laboratory and radiological investigations to diagnose sepsis including lactate level on presentation (0 hour), after 6 hours and after 24 hours, then lactate clearance is calculated and patients were divided to lactate clearance group and non-clearance group.

Results: The study showed that clearance patients significantly had lower mortality rate, SOFA score, vasopressor therapy duration, ventilation need and hospital stay days than the non-clearance patients.

Conclusion: Lactate is a good marker for predicting mortality and evaluating the initial resuscitation and management of severe sepsis and septic shock.

Key words: lactate clearance, mortality rate, initial resuscitation, sepsis or septic shock.

Introduction

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection (Singer et al., 2016). Severe sepsis and septic shock are the biggest cause of mortality in critically ill patients (Gaieski et al., 2013). Early identification and appropriate management in the initial hours after sepsis improves outcomes (Rhodes et al., 2016).

The Surviving Sepsis Campaign recommends the use of many parameters to assess perfusion in sepsis: mean arterial blood pressure (MAP), urine output, central venous oxygen saturation (ScvO₂) and arterial lactate as a resuscitation goal (**Rhodes et al., 2016**).

Biomarkers, biologic molecules that characterize normal or pathogenic processes and can be objectively measured, have been suggested as a means of aiding diagnosis, predicting disease severity and outcome, and monitoring response to therapy. More than 170 such markers have been studied for potential use in septic patients (Vincent et al., 2011).

In septic patients, biomarkers should ideally allow the differentiation between infectious and noninfectious causes of inflammation and predict the onset of the clinical