

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ENHANCING THE PERFORMANCE OF DISTANCE PROTECTION DURING POWER SWING

By

Loai Mohamed Ali El-Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

ENHANCING THE PERFORMANCE OF DISTANCE PROTECTION DURING POWER SWING

By

Loai Mohamed Ali El-Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Mahmoud Ibrahim Gilany

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Doaa Khalil Ibrahim

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Assoc. Prof. Dr. Aboul'fotouh Abd-Elreheem Mohamed

Electrical Power and Machines Department, Higher Institute of Engineering at El-Shorouk City, Cairo, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

ENHANCING THE PERFORMANCE OF DISTANCE PROTECTION DURING POWER SWING

By Loai Mohamed Ali El-Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:		
Prof. Dr. Mahmoud Ibrahim Gilany	Thesis Main Advisor	
Prof. Dr. Doaa Khalil Ibrahim	Advisor	
Prof. Dr. Essam Mohamed Aboul-Zahab	Internal Examiner	
Prof. Dr. Almoataz Youssef Abdelaziz	Evtomal Evominar	
Faculty of Engineering at Ain Shams University	External Examiner	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 Engineer's Name: Loai Mohamed Ali El-Sayed

Date of Birth: 10 /8 / 1987 Nationality: Egyptian

E-mail: eng loaim87@yahoo.com

Phone: +201283894456

Address: 10th of Ramadan, neighborhood 38, part 86, Egypt

Registration Date: 01/10/2015 Awarding Date:/2021

Degree: Doctor of Philosophy

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Ibrahim Gilany Prof. Dr. Doaa Khalil Ibrahim

Assoc. Prof. Dr. Aboul'fotouh Abd-Elreheem Mohamed

Higher Institute of Engineering at El-Shorouk City, Cairo, Egypt

Examiners:

Prof. Dr. Mahmoud Ibrahim Gilany
Prof. Dr. Doaa Khalil Ibrahim
Prof. Dr. Essam Mohamed Aboul-Zahab
Prof. Dr. Almoataz Youssef Abdelaziz
(External Examiner)

Faculty of Engineering- Ain Shams University

Title of Thesis:

ENHANCING THE PERFORMANCE OF DISTANCE PROTECTION DURING POWER SWING

Key Words:

Power System Stability, Distance Protection, Power Swing Blocking and Unblocking, Phasor Measurement Units (PMUs), High Impedance Faults (HIFs).

Summary:

Power swing is a transient phenomenon arises due to several reasons including line switching, line outage, sudden load increment or decrement, faults, etc. Unnecessary tripping during power swing and unnecessary blocking for faults occurring during power swing result in distance relay mal-operation. This thesis introduced two schemes for supervising distance relays during swings and throughout faults during swings at different fault conditions including high impedance faults. The schemes rely on constructing a locus diagram for the current and voltage differences between the two ends of the protected line using phasor measuring units. The schemes only calculate two mathematical features, the length of semi-major and semi-minor axes for each locus. The applied threshold values for the schemes are calculated depending on the ellipse circumference and the rate of change of ellipse circumference during fast power swing respectively.

The achieved results proved that the proposed schemes are immune to fault inception angles and slip frequencies in different locations of zone-1 and zone-2 of distance relays, while the maximum detection time of the algorithm was 4 ms and with a communication latency of 50 milliseconds using 4G technology. The proposed schemes ensure salient features for detecting fault cases with adequate speed and approved their superiority over conventional algorithms.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references sections.

Name: Loai Mohamed Ali El-Sayed

Date: --/--/2021

Signature:

ACKNOWLEDGMENT

Before all and after all, I would like to say thanks to "ALLAH" who supported and strengthened me all through my life and in completing my studies for the Doctor of Philosophy Degree.

Then, I would like to thank my supervisors for their contributions to this thesis and for their support in the field of scientific research, and I hope to keep in touch in the future.

Prof. Dr. Mahmoud Ibrahim Gilany, thank you for your guidance, encouragement, and your advice throughout the work. Finally, asking my God Allah, blessing your health.

Prof. Dr. Doaa Khalil Ibrahim, thank you for your guidance, encouragement, and your advice throughout the work. Finally, asking my God Allah, blessing your health.

Associate Prof. Dr. Aboul'fotouh Abd-Elreheem Mohamed, thank you for your guidance, encouragement, and your advice throughout the work. Finally, asking my God Allah, blessing your health.

A special and dedicated thank for the spirit of my mother, and continuous support, encouragement from my father.

Special thanks to my wife for her continuous support and her advices. In addition, I do not forget my children NOOR, FARIDA, and MARYAM.

TABLE OF CONTENTS

ACKNOWLEDGMENT	
TABLE OF CONTENTS	III
LIST OF TABLES	
LIST OF FIGURES	
LIST OF SYMBOLS AND ABBREVIATIONS	
ABSTRACT	XIII
CHAPTER (1): INTRODUCTION	1
1.1 Distance Relays for Transmission Lines Protection	
1.1.1 Low-impedance faults (LIFs)	
1.1.2 High-impedance faults (HIFs)	
1.1.3 MHO Relay Characteristics	
1.1.4 The Distance Relay Impedance Calculations	
1.1.4.1 Phase-to-Phase Impedance	
1.1.4.2 Phase-to-Ground Impedance	
1.1.5 Zones of Protection and Reach Settings	
1.1.5.1 Zone 1 Setting	
1.1.5.2 Zone 2 Setting	6
1.1.5.3 Zone 3 Setting	7
1.2 Power System Stability	7
1.2.1 Visualization of an Oscillation in a Power System	8
1.2.2 Power Swing and Out of Step phenomenon	11
1.2.3 Apparent Impedance of Distance Relay during Power Swin	ıg11
1.3 Wide Area Protection	14
1.3.1 Phasor Data Concentrator (PDC)	15
1.3.2 Phasor Measurement Units (PMUs)	16
1.3.2.1 Time Delays	17
1.4 Problem Statement	19
1.5 Thesis Objectives	20
1.6 Thesis Overview and Organization	
CHAPTER (2): LITERATURE SURVEY	22
2.1 Introduction	

2.2 Power Swing Detection Methods	23
2.2.1 Conventional Methods	23
2.2.1.1 Concentric Characteristic	23
2.2.1.2 Blinder Scheme	24
2.2.1.3 Decreased Resistance Method	24
2.2.1.4 Superimposed Current Method	25
2.2.1.5 Swing Center Voltage ($Vcos\phi$)	25
2.2.1.6 Three Phase Power Variation	27
2.2.2 Signal Analysis Techniques	27
2.2.2.1 Fast Fourier Transform (FFT) Analysis	27
2.2.2.2 Wavelet Transform (WT)	28
2.2.2.3 Prony Method	30
2.2.2.4 S-Transform	30
2.2.3 Intelligence based diagnosis	31
2.2.3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)	31
2.2.3.2 Support Vector Machine (SVM)	32
2.2.4 Synchrophasor-Based PSB Relaying	33
2.3 Summary	35
CHAPTER (3): PROPOSED LOW IMPEDANCE FA	
POWER SWING DISCRIMINATION SCHEME	
3.1 The Proposed Scheme	
3.1.1 Methodology of the Proposed Scheme and Proposed Index	
3.1.2 Steps for Implementing the Proposed Scheme	
3.2 The Tested Network	
3.2.1 Placement of PMUs	
3.2.2 Distance Relay Setting	
3.3 Results and Discussions	
3.3.1 Distinguishing Real Faults and Stable Power Swing Conditions	
3.3.2 Examining an Unstable Power Swing	
3.3.3 Detecting Faults during Power Swing	
3.3.3.1 Detecting Faults during Slow Power Swing	
3.3.3.2 Detecting Faults during Fast Power Swing	
3.4 Summary	52

CF	IAPTE	R (4): PROPOSED HIGH IMPEDANCE	FAULTS
DU	JRING	POWER SWING IDENTIFICATION SCHEME	53
4.1	The P	roposed Scheme	53
4	.1.1 Ma	in Stages for the Proposed Scheme	54
4	.1.2 Imp	plementing the Proposed Scheme	58
4	.1.3 Hig	gh Impedance Fault Model	58
4.2	Simul	ation Results and Discussion	59
4	.2.1 Eva	aluating the Proposed Scheme Using Two Area Network	59
	4.2.1.1	Detecting Symmetrical Faults during Symmetrical Power Sw	ing59
	4.2.1.2	Detecting Unsymmetrical Faults during Symmetrical Power	Swing61
	4.2.1.3	Detecting HIF during Asymmetrical Power Swing	63
	4.2.1.4	Additional Cases	64
4	.2.2 Eva	aluating the Proposed Scheme Using nine bus System	66
	4.2.2.1	Detecting the Faults during Slow Power Swing	66
	4.2.2.2	Detecting the Faults during Fast Power Swing	67
	4.2.2.3	Detecting the Faults during Multi-Mode Power Swing	68
	4.2.2.4	Extra Cases	69
4.3	Summ	ary	70
CF	IAPTE	R (5): CONCLUSIONS AND SUGGESTIO	NS FOR
FU	TURE	WORK	71
5.1	Featur	es of the Proposed Schemes	71
5.2	Future	Work	72
RE	CFERE	NCES	73
PU	BLISE	IED WORK	82
			vore ca
		IX A: REAL CASE OF POWER SWING IN EGY IX B. TWO AREA NETWORK	
		IX B: TWO AREA NETWORKIX C: NINE BUS SYSTEM	
	.PEND خص الرس		
	<i></i>	•••••••••••••	′

LIST OF TABLES

Table 2.1: Record of blackouts due to disturbance tripping	22
Table 4.1: Results for <i>ROCOCmax</i> index and fault detection time for Two Area	
four-machine, ten-bus network	65
Table 4.2: Results for ROCOCmax Index and fault detection time for WSC	CC
three-machine, nine-bus system	69

LIST OF FIGURES

Figure 1.1: MHO Characteristic	3
Figure 1.2: Phase A-to-phase B impedance unit	4
Figure 1.3: Phase A-to-ground impedance unit	6
Figure 1.4: Schematic classification of power system stability	8
Figure 1.5: Two-machine system model	8
Figure 1.6: Power angle curve for various conditions	10
Figure 1.7: Impedance locus seen by the relay as a function of δ	13
Figure 1.8: Structure of three-layer WAP	15
Figure 1.9: Levels of phasor data concentrators	16
Figure 1.10: Phasor Measurement Unit (PMU) block diagram	17
Figure 2.1: Concentric impedance characteristics	23
Figure 2.2: Blinder scheme characteristics	24
Figure 2.3: Superimposed current detection technique	25
Figure 2.4: Voltage phasor diagram of a two-source system	26
Figure 2.5: Vcosφ is a projection of local voltage Vs onto local current I	26
Figure 2.6: Signal decomposition of xn using DWT at 200 kHz sampling	29
Figure 2.7: Structure of the power swing blocking scheme in [83]	32
Figure 2.8: Three-bus, two-source equivalent power system	34
Figure 3.1: The arrangement of PDC, PMUs and protective relays	36
Figure 3.2: Graphical illustration of the $(\Delta I - \Delta V)$ ellipse	37
Figure 3.3: Flow diagram of the proposed scheme	40
Figure 3.4: Relationship between the generator's rotor angle and measurer	nents
at the generator's terminal	41
Figure 3.5: Two-area four-machine power system	41
Figure 3.6: Flowchart of the algorithm in [115]	43
Figure 3.7: Trajectory impedance for R1 and R2	44
Figure 3.8: Performance of R2 for a real fault on Line-2	45
Figure 3.9: Performance of R1 for a stable power swing on Line-1	47
Figure 3.10: Performance of R1 during unstable swing case	48

Figure 3.11: Performance of R1 for faults in Zone-1 during slow power swing
Figure 3.12: Performance of R1 for faults in Zone-2 during fast power swing
Figure 4.1: Graphical illustration of the $(\Delta I - \Delta V)$ ellipse
Figure 4.2: Three-phase current and voltage differences across Line-1 for HIF a
40% of Line-1 during fast power swing
Figure 4.3: The value of ellipse circumference for HIF at 40% of Line-1 during
fast power swing55
Figure 4.4: Rate of change of ellipse circumference for HIF at 40% of Line-
during fast power swing50
Figure 4.5: Flow diagram of the proposed scheme
Figure 4.6: The output of the proposed scheme (Trip signal) for HIF at 40% o
Line-1 during fast power swing
Figure 4.7: High impedance fault model
Figure 4.8: Three-phase current and voltage differences across Line-1 for three
phase fault at 95% of Line-1 during slow power swing
Figure 4.9: The proposed index ROCOCmax at R1 for three phase fault at 95%
of Line-1 during slow power swing
Figure 4.10: Three-phase current and voltage differences across Line-1 fo
symmetrical fault at 5% of Line-1 during fast power swing 60
Figure 4.11: The proposed index ROCOCmax at R1 for three phase fault at 5%
of Line-1 during fast power swing
Figure 4.12: Single-phase current and voltage difference across Line-1 for A-C
fault at 40% of Line-1, 90° inception during slow power swing
Figure 4.13: The proposed index ROCOCmax at R1 for A-G fault at 40% of
Line-1, 90° inception during slow power swing
Figure 4.14: Single-phase current and voltage difference across Line-1 for A-C
fault at 5% of Line-1, 0° inception during fast power swing 62