

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Department: Geology

Mineralogical and geochemical suitability of some Egyptian raw materials for the production of magnesio-aluminosilicate ceramics

A Thesis submitted for the degree of Doctor of Philosophy in Science in Geology

Ву

Student name/Ahmed Mohamed Yahya Ahmed

То

Department: Geology

Faculty of Science - Ain Shams University

Supervised by

Prof. Dr. Baher Abdel-Hamid El Kalioubi Professor of Geology - Geology Department Faculty of Science - Ain shams University Prof. Dr. Esmat Mahmoud Aly Hamzawy Professor of glass-ceramics, glass Department - National Research Centre

Prof. Dr. Sayed Kenawy Hamed
Professor of Inorganic chemistry Refractories, Ceramic and Building
materials Department - National Research
Centre

Prof. Dr. Abdel Monem Mohamed Soltan Professor of Applied Mineralogy - Geology Department - Faculty of Science - Ain Shams University

Year (2021)

Validity of Ph.D. of Science Thesis in Geology

Student name/ Ahmed Mohamed Yahya Ahmed				
• Thesis title/ Mineralogical and geochemical suitability of some Egyptian raw materials for the				
production of magnesio-aluminosilicate ceramics				
Degree/ Assistant Lecturer				
Supervisory Authority /				
1) Prof. Dr. Baher Abdel-Hamid El Kalioubi				
Professor of Igneous and metamorphic rocks - Faculty of Science - Ain Shams University				
2) Prof. Dr. Esmat Mahmoud Ali Hamzawy				
Professor of Glass-ceramics - Glass Department - National Research Centre				
3) Prof. Dr. Sayed Qnawey Hamed				
Professor of Inorganic chemistry — Refractories and ceramics Department — National Research Centre				
4) Prof. Dr. Abdel Monem Mohamed Soltan				
Professor of Applied mineralogy - Faculty of Science - Ain Shams University				
Members of the Judging Committee /				
1) Prof. Dr. Adel Hassan El Afandy				
Professor of Geology – Geology Department – Nuclear Energy Authority				
2) Prof. Dr. Mubarak Hassani Aly Mahmoud				
Professor of Applied mineralogy — Institute of Environmental Studies and Research - Sadat City University				
3) Prof. Dr. Baher Abdel-Hamid El Kalioubi				
Professor of Igneous and metamorphic rocks — Faculty of Science — Ain Shams University				
Data for the administration of postgraduate studies				
• Date of discussion of the message: / /				
Department Council approval date: / /				
Date of approval of the Faculty Board: / /				
Date of approval of the University Council: / /				
Employee Signature Director of Studies Department Signature				
Faculty Secretary				

Abstract

This thesis focuses on studying the different types of talc rocks in the Central and Southern Eastern Desert to use it in the synthesis of cordierite-based ceramics. Ten locations with different varieties of talc rocks are chosen to achieve the goal of the study. These areas are Wadi Abu Fannani, Wadi Mubarak, Gabal Hijllij, Gabal Um Salatit, Wadi Barramiya, Gabal Mudargag, Wadi Antr, Wadi Nukharia and Wadi Allaqi. To differentiate between the ten talc ophiolitic types, petrological and geochemical studies were used.

The petrographic and geochemical studies showed that the talc rocks comprise talc, tremolite, serpentine, chlorite, quartz and carbonate. The samples of Wadi Allaqi and Wadi Antr are pure talc rocks. While the rocks collected from Wadi Mubarak are talc-tremolite rocks and Wadi Nukharia are talc-carbonate rocks. The studied talc rocks were created by hydrothermal solution effect on the ultramafic-mafic rocks whereas these rocks exhibit komatiitic trend.

Our purpose is to use the talc rocks in the dielectric ceramic materials. In order to attain this, nine batch compositions were prepared based on cordierite composition. The raw material and the fired samples are characterized using X-ray powder diffraction (XRD), X-ray fluorescence (XRF), thermal analysis (TGA) and SEM microscopy attached with energy dispersive X-ray analysis (EDAX).

The results revealed that the cordierite starts crystallization at 1200 °C and continuous to increase at expense of cristobalite, enstatite, diopside, mullite and Mg-Al spinel with increasing sintering temperature. These samples show massive, subhedral, and holohedral well-developed cordierite crystals between 1200-1350 °C. The physical features illustrate increasing trend of

average density up to 1200 °C due to presence of high densities phases (enstatite, mullite and Mg-Al spinel) and filling the liquid phases into pores. However, increasing cordierite ratio cause to decrease of average bulk density with rising of sintering temperature.

The dielectric properties of sintered ceramic samples have been investigated over a wide frequency range $(10^{-1}\text{-}10^6\text{ Hz})$, using the broadband dielectric spectrometer (BDS). Antr and Allaqi ceramic samples have high permittivity and high loss tangent values. In contrast, these values considerably decreased for the ceramics of higher CaO content, i.e. ≥ 1.25 % (Nukharia and Salatit) due to hexagonal - orthorhombic phase in cordierite. Particularly, Nukharia showed much lower loss tangent values (0.0016) for all sintering temperatures. These features make Nukharia sintered samples promising in many applications, i.e. electrical capacitors, microwave devices, wireless communication, and etc. Variation of dielectric properties with sintering temperature was strongly dependent of ceramic composition. The dielectric properties found to be affected by DC conductivity and Maxwell Wagner Sillars (MWS) polarization at low frequencies.

Key words: Ceramics; Talc; Cordierite; Permittivity; and Dielectric.

ACKNOWLEDGEMENTS

First thanks to God for all who guided me to bring forth this work. Second, thanks to my supervisors and colleagues during my research at Geology Department, Faculty of Science, Ain shams University that have brought forth many interesting experiences. I would like to thank my academic supervisor Prof. Dr. Baher Abd El- Hamid El Kalioubi, professor of geology, Geology Department, Faculty of Science, Ain shams University. for his guidance during the field works, kind help and facilities during the planning for this research, providing valuable data on Egyptian Basement rocks, rich discussions and thorough reviewing the present work. My special gratitude and appreciation to my academic supervisor Prof. Dr. Esmat Mahmoud Aly Hamzawy, Professor of Glass ceramics, Glass Department, National Research Center, El Dokki, Egypt, for his continuous help, continuous encouragement, discussing critical technical data of the thesis. Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Sayed Kenawy Hamed, Professor of chemistry, ceramic and refractory Department, National Research Center, El Dokki, Egypt, for the continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and immense knowledge. The author wishes to express his thanks and extreme appreciation to Prof. Dr. Abdel Monem Mohamed Abdel Monem, Geology Department, Faculty of Science; Ain shams University, Egypt for supervising this thesis, continuous help and critical discussion. I would like to express my sincere thankfulness to my family who has always been helpful of my motivation in life and they have given me the motivation and encouragement and got me back on path when times were intractable. Last but not the least, I would like to thank my wife for supporting me spiritually throughout my life.

Table of Contents Abstract	i
Acknowledgment	iii
Content	iv
List of Figures	viii
List of Tables	xv
Chapter 1 - Introduction	1
1. General statements	1
1.1. Ophiolite Sequence and Ophiolitic Mélange	3
1.1.1. Serpentinites, Ophiolitic Mélange and Talc-Carl	bonate Rocks .6
1.1.1.a. Serpentinites and Ophiolitic Mélange	7
1.1.1.b. Talc-Carbonate Deposits	10
1.2. Literature review on cordierite ceramics	12
2. Literature review on cordierite ceramics	18
Chapter 2 – Materials and methods	21
2.1. Materials	21
2.2. Methods of study	22
2.2.1. Petrography and mineralogy	22
2.2.2. Chemical composition	23
2.2.3. Thermal behavior	23
2.2.4. Batch formulation and firing processes	23
2.2.5. Physical properties	24
2.2.6. Microstructure determination	25
2.2.7. Dielectric relaxation properties	25

Chapter 3 – Geologic setting and mineralogy	26
3.1. Geological review	26
3.2. Field relation and geology	28
3.2.1. Wadi Abu Fannani	28
3.2.1.1. Geology of Wadi Abu Fannani	28
3.2.1.1.a. Foliated rocks	29
3.2.1.1.b. Ophiolitic rocks	30
3.2.1.2. Mineralogy of the talcous rocks	30
3.2.2. Wadi Mubarak	32
3.2.2.1. Geology of Wadi Mubarak	32
3.2.2.2. Mineralogy of Talc-tremolite schist rock	35
3.2.3. Idfu-Marsa Alam road	36
3.2.3.1.a. Gabal Hijllij	36
3.2.3.1.b. Um salatit area	36
3.2.3.1.c. Wadi Barramiya area	39
3.2.3.2. Mineralogy of talcified rocks in Idfu-Marsa Alam road	41
3.2.3.2.a. In Gabal Hijllij	41
3.2.3.2.b. In Um Salatit	41
3.2.3.2.c. In Wadi Barramiya area	42
3.2.4. Mudargag and Gabal El Mireiwa	44
3.2.4.1. Geology of Mudargag and Gabal El Mireuwa area	44
3.2.4.2. Mineralogy of Mudargag and Gabal El Mireuwa rocks	47
3.2.4.2.a. Listwaenite	47
3.2.4.2.b. Serpentinites with carbonates	49
3.2.5. Wadi Antr and Nukharia mine (South Hafafit zone)	50

3.2.5.1. Geology of Wadi Antr and Nukharia mine	50
3.2.5.1.a. Mica schists	51
3.2.5.1.b. Serpentinites and related talc rocks	51
3.2.5.2. Mineralogy of Wadi Antr and Nukhaira mine	52
3.2.6. Wadi Allaqi	57
3.2.6.1. Geology of Wadi Allaqi district	57
3.2.6.2. Mineralogy of Allaqi Talc rocks	59
Chapter 4 – Geochemical characterization	60
4.1. Geochemical characterization	60
4.1.1. Chemical distribution of the studied rocks	60
4.1.2. Chemical classification and nomenclature	67
4.1.3. Magma type	72
Chapter 5 – Characterization of Talc-based cordierite ceramics	75
5.1. Raw material characterization	77
5.1.1. Mineral composition	77
5.1.2. Chemical composition	80
5.1.3. Thermal behavior	81
5.1.4. Microstructure of the raw material	86
5.2. Batch formulation	87
5.3. Sintering process	89
5.4. Post-sintering characterization	89
5.4.1. Macroscopic investigation	89
5.4.2. Phase composition of sintered batches	95
5.4.2.1. Solid and liquid phase contents	

5.4.3. Scanning Electron Microscopy (SEM) and Energy ray Microanalysis (EDX) of sintered discs	, 1
5.4.4. Physical characterization	
5.4.5. Dielectric Relaxation Experiments	128
5.4.5.1. The frequency dependent permittivity and loss ta	angent128
5.4.5.2. The frequency dependent complex electrical mod	dulus137
5.4.5.3. The frequency dependent AC conductivity (σ_{ac})	141
Chapter 6 – Summary and conclusion	145
References	148