

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Optical coherence Tomography Angiography versus fundus fluorescein angiography in assessment of clinically undetected neovascularization in severe non-proliferative diabetic retinopathy patients

Thesis

Submitted in partial fulfillment of the Master Degree in Ophthalmology

Βγ Youstiena Raafat Mories (MB.B.Ch.)

Under supervision of

Prof. Hussein Shaker El Markapy

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Mohammed Hanafy Hashem

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Noureldin Hussein Abozeid

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Hussein Shaker El Markapy, Professor of Ophthalmology, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mohammed Hanafy Hashem**, Lecturer of Ophthalmology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Moureldin Hussein**Abozeid, Lecturer of Ophthalmology, Faculty of Medicine - Ain

Shams University, for his great help, active participation and guidance.

Youstiena Raafat

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	6
Patients and Methods	63
Results	66
Discussion	87
Conclusion	93
Summary	
References	
Arabic Summary	 -

List of Abbreviations

Abb.	Full term
μm M	icrometer
AMD Aş	ge-Related Macular Degeneration
BMO Ba	ruch's membrane opening
BRM Br	ruch's membrane
CC C1	noriocapillaris
CNVM CI	noroidal neovascular membranes
CRA Ce	entral Retinal Artery
CRV Ce	entral Retinal Vein
DME Di	abetic Macular Edema
DR Di	abetic Retinopathy
ETDRS Ea	arly Treatment Diabetic Retinopathy Study
FAZ Fo	oveal Avascular Zone
FFA Fu	ındus Fluorescein Angiography
ICGA In	docyanine green angiography
ILM In	ternal Limiting Membrane
INL In	ner Nuclear Layer
IPL In	ner Plexiform Layer
IRMA In	tra-retinal Microvascular abnormalities
IS/OS In	ner segment-outer segment junction
mm M	illimeter
mm2 So	quare Millimeter
NPDR No	on-Proliferative Diabetic Retinopathy
NVD (s) No	ew Vessel(s) at the Disk
NVE (s) No	ew Vessel(s) Elsewhere
NVI No	ew Vessels of the Iris
OCT O ₂	ptical Coherence Tomography

List of Abbreviations Cont...

Abb.	Full term
OCTA	Optical Coherence Tomography Angiography
OPL	Outer Plexiform Layer
PAMM	Paracentral Acute Middle Maculopathy
PDR	Proliferative Diabetic Retinopathy
PED	pigment Epithelial detachment
RAP	Retinal Angiomatous Proliferation
RBC(s)	Red Blood Cell(s)
RNFL	. Retinal Nerve Fiber Layer
RPCP	. Radial peripapillary capillary plexus
RPE	Retinal Pigment Epithelium
SD-OCT	Spectral Domain Optical Coherence Tomography
SSADA	Split-spectrum Amplitude-decorrelation Angiography
VEGF	Vascular Endothelial Growth Factor
VRI	. Vitreo-retinal interface
SVP	superficial vascular plexus
DVC	Deep vascular complex
SVC	superficial vascular complex
GCL	ganglion cell layer
ICP	intermediate capillary plexus
DCP	Deep capillary plexus

List of Tables

Table No	. Title	Page No.
Table (1):	ETDRS classification of diabetic retir	opathy 14
Table (2):	Demographic data of the study popul	ation66
Table (3):	Distribution of age and sex	67
Table (4):	Distribution of type of diabetes, disease control	
Table (5):	Data distribution according to FFA results	
Table (6):	Relation between FFA, age and sex	71
Table (7):	Correlation between FFA, type of duration and control of disease	
Table (8):	Correlation between OCTA with age	and sex 76
Table (9):	Correlation between OCTA with diabetes, duration and disease contro	V 1
Table (10):	Correlation between FFA & OCTA	81

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Fluorescein fundus angiogram s retinal vessels and capillary network	
Fig. (2):	Schematic representation of peripapillary capillaries	
Fig. (3):	Anatomic localization of vascular plex the human retina in the macula	
Fig. (4):	Schematic representation of the retinal vein and artery inside the optic	
Fig. (5):	Histological sections showing the retinal vessels and surrounding fibrou envelope.	s tissue
Fig. (6):	Schematic flow- chart for the pathoge diabetic retinopathy	
Fig. (7):	Diabetic Retinopathy—Venous Anoma	lies 15
Fig. (8):	Diabetic Retinopathy Microaneurysms	16
Fig. (9):	Ischaemic Maculopathy (capillary and enlarged FAZ).	_
Fig. (10):	Diabetic Retinopathy microaneurysi IRMA	
Fig. (12):	FFA showing severe NPDR with c	apillary
	dropout in the temporal retina	20
Fig. (12):	IRMA in very severe NPDR	21
Fig. (13):	FFA IRMA in very severe NPDR	21
Fig. (14):	Proliferative Diabetic Retinopathy	23
Fig. (15):	FFA in Proliferative Diabetic Retinopa	athy 23
Fig. (16):	Fundus view with poor pupillary dilat	ation 26
Fig. (17):	Peripheral halo	26
Fig. (18):	Choroidal Phase	29
Fig. (19):	Arterial Phase	29
Fig. (20):	Early Venous Phase	30

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (21):	The choroidal background is well fi	
Fig. (22):	Mid venous phase. Both the artery a veins are now full	
Fig. (23):	Late venous phase	33
Fig. (24):	Late Venous Phase, the fluorescence	of the
	venous vessels decreases slowly	33
Fig. (25):	Late phase. The late phase of fluctuant angiogram shows reduced fluorescent all retinal structures	ce from
Fig. (26):	Late phase	
Fig. (27):	A pre-retinal hemorrhage block	
3 . ,	fluorescence of retinal vessels and capi	
Fig. (28):	Filling Defects: Branch Artery Occlusion	on 36
Fig. (29):	Filling Defects	36
Fig. (30):	Window Defect	37
Fig. (31):	Bull's Eye Maculopathy	38
Fig. (32):	Mid-phase fluorescein angiogram	39
Fig. (33):	Early phase FFA showing PDR with ischemia	
Fig. (34):	Classic Neovascularization	
Fig. (35):	Retinal Leakage in Central	
1 18. (00).	Chorioretinopathy	
Fig. (36):	Vasculitis	
Fig. (37):	Normal macula in SD-OCT	42
Fig. (38):	Motion artifact	45
Fig. (39):	Shadowing artifact	
Fig. (40):	Projection artifact	
Fig. (41):	Segmentation error	

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (42):	Anatomy of the normal retina; coherence tomography-angiography vascular networks slabs	(OCTA)
Fig. (43):	Inner retinal slab.	51
Fig. (44):	Middle retinal Slab.	51
Fig. (45):	Outer retinal Slab.	52
Fig. (46):	Choriocapillaris Slab.	52
Fig. (47):	OCTA optic nerve in diabetic patien NVD visible in vitreous slab	
Fig. (48):	OCTA images from the superficial ca	apillary
	plexus	
Fig. (49):	OCTA of NVD	59
Fig. (50):	Deep Capillary Plexus (DCP) on OCT-	
Fig. (51):	Montage OCTA image in a patient diabetic retinopathy	
Fig. (52):	Percentage of sex distribution among cases	
Fig. (53):	Percentage of type 1 and type 2 damong cases	liabetes
Fig. (54):	Percentage of severe NPDR and according to FFA.	l PDR
Fig. (55):	Percentage of PDR and NPDR accor	ding to
Fig. (56):	Correlation between FFA with age	
Fig. (57):	Correlation between FFA with sex	
Fig. (58):	Correlation between OCTA and age	
Fig. (59):	Correlation between OCTA with sex	
Fig. (60):	Correlation between OCTA with dura disease	
Fig. (61):	Correlation between FFA and OCTA	

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (62):	Sensitivity and specificity of F with OCTA	
Fig. (63):	Case 1	
_	Case 2	
Fig. (65):	Case 3	86

Introduction

Diabetic retinopathy is a microangiopathy of the retina from which nearly all persons with diabetes eventually suffer. (1)

It causes changes in the vascular wall structure and in the rheological properties of the blood. The combination of these factors leads to capillary occlusion and thereby to retinal ischemia and angiographically demonstrable leakage. (2)

Early Treatment Diabetic Retinopathy Study (ETDRS) grading scheme consists of mild and moderate non-proliferative diabetic retinopathy (background diabetic retinopathy), severe non-proliferative retinopathy (pre-proliferative diabetic retinopathy) and non-high-risk and high-risk proliferative diabetic retinopathy (proliferative diabetic retinopathy). (3)

Progressing of Non-proliferative Diabetic retinopathy from mild, moderate to severe depends on the severity of flame shaped and blot haemorrhages, hard exudates, fluctuations of venous calibre (venous beading) and intraretinal microvascular anomalies.⁽⁴⁾

As hypoperfusion in the retinal capillary bed becomes more severe and spreads across the retinal area, proliferative diabetic retinopathy develops in the form of neovascularization arises at the papilla (neovascularization of the disk, NVD), on the retina outside the papilla (neovascularization elsewhere, NVE) and on the iris (neovascularization of the iris, NVI) as an attempt to compensate the ischemia. (5)

For decades, dye-based angiography has been the gold standard clinical imaging modality for evaluating retinal and choroidal vascular pathologies. (6)

The main idea of FFA based on injection of the fluorescein intravenously, exciting the dye with blue light with the aid of a cobalt filter, and photographically recording the fluorescein filling sequence of the retinal vasculature. (7)

One of the clear advantages of fundus fluorescein angiography is their ability to capture a much wider area of the retinal and choroidal vasculature, another advantage is that its images are less liable to show artifacts than other imaging techniques. (6)

Despite its success, fundus fluorescein angiography has some weak points as being invasive and time-consuming, in addition to having the potential for allergic reactions to the dye. Moreover, it is only a two-dimensional study focusing on the superficial retinal circulation, without the ability to visualize the deeper capillary structures. (6,8)

Neovascularization in proliferative diabetic retinopathy is formed by capillaries with very fragile single cell walls and may cause vitreal haemorrhages with ensuing glial proliferation, these new vessels generally appear at the edges of the ischemic areas; initially they can be recognized because they are very irregular and give rise to an intense leakage of the fluorescein. (9,10)