

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Efficacy of Ultrasound Guided Bilateral Pectoralis Nerve Block for Postoperative Pain Control in Cardiac Surgery, Randomized Control Trial

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Anesthesiology, Intensive Care and Pain Management.

By

Omar Ragaie Mohamed Elhelaly

M.B., B.CH, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Ahmed Nagah Elshaer

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Fady Adib Abd ElMalek

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Islam Abdel-Aal Abdel-Mouty Taher

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

Really, I can hardly find the words to express my gratitude to **Prof. Dr. Ahmed Magah Elshaer** Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Fady Adib Abd ElMalek**, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of **Dr. Islam Abdel- Aal Abdel-Mouty,** Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Finally, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Omar Ragaie Mohamed Elhelaly

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of the Thoracic Wall	5
Cardiac Surgery and Pain	17
■ Pharmacology of Local Anesthetics	27
Pecs Block	35
Patients and Methods	42
Results	48
Discussion	59
Conclusion	65
Summary	66
References	68
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Vessels relevant to pecs block	10
Table 2:	Nerves relevant to pecs block	11
Table 3:	Muscles relevant to Pecs	16
Table 4:	Characteristics of local anesthetics	28
Table 5:	Demographic data	49
Table 6:	Time to extubate (min)	
Table 7:	Heart rate in the ICU (beat/min)	51
Table 8:	Mean arterial blood pressure (mmH ICU	_
Table 9:	Time to ambulation on chair (mins)	55
Table 10:	Visual analogue scale scores at extuba	ation 56
Table 11:	Time to patient analgesic request "hrs	s." 56
Table 12:	Comparison between control group study group according to need of ranalgesics.(n= number of patients recrescue doses)	escue eived
Table 13:	Comparison between control group study group according to total sys analgesics consumption (Morphine 1m	temic

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	Skeleton of the thoracic wall The external and internal inte	
Figure 2:	muscles of the thoracic wall	
Figure 3:	Pectoralis major muscle	7
Figure 4:	Muscles That Position the Pectoral Gi	rdle8
Figure 5:	Arterial blood supply of the thoracic w	all9
Figure 6:	Typical spinal nerve	11
Figure 7:	Cut section in the anatomical land involved in Pecs block pectoral region.	
Figure 8:	Muscles of the trunk	14
Figure 9:	Pectoralis major muscle has been ex for better viewing (anterior view	of the
	thorax)	
Figure 10:	The surgeon's view of the heat throusternotomy	-
Figure 11:	Different modalities of analgesia	21
Figure 12:	Pain transmission from peripheral tisthe spinal cord	
Figure 13:	Basic local anesthetic structure	
Figure 14:	Linear array transducer with sup scan of the neck	
Figure 15:	PEC 1 block-probe and needle placeme	
Figure 16:	Sonoanatomy PEC I	
Figure 17:	PEC 2 block-probe and needle placeme	ent41
Figure 18:	Heart rate	52
Figure 19:	Mean arterial blood pressure	54
Figure 20:	Comparison between control ground study group according to ambulat	ion on
	chair onset	55

Tist of Abbreviations

Abb.	Full term
CS	Cardiac surgery
CWFPB	Chest wall fascial plane blocks
DRG	Dorsal root ganglia
ERAS	Enhanced recovery after surgery
<i>LA</i>	Local anesthetics
LPN and MPN	Lateral and medial pectoral nerves
<i>MA</i>	Multimodal analgesia
NMDA	N- $methyl$ - D - $aspartate$
<i>PAG</i>	Periaqueductal grey
PECS	Pectoral nerves block
PNB	Peripheral nerve blockade
PVBLM	Landmark-based paravertebral blocks
<i>RA</i>	Regional anesthesia/analgesia
<i>RVM</i>	$ Rostroventro medial\ medulla$
SEH	Spinal epidural hematoma
TEA	Thoracic epidural anesthesia
<i>US</i>	Ultrasound

Introduction

ardiac surgery (CS) generates a unique set of challenges compared to non-cardiac surgery. Postoperative outcomes and quality of life result from several factors, including comorbidities, type and quality of surgical intervention, the extent of the systemic inflammatory response, range of organ dysfunction and pain (Wahba et al., 2019).

Conveniently, many of these factors are amenable to optimization. To this end, enhanced recovery after surgery (ERAS) programs have evolved and are now commanded by a multidisciplinary consensus in CS. Pain management is a crucial element of cardiac ERAS. Adequate analgesia is a prerequisite to ensure patient comfort, low morbidity, early mobilization, and cost effectiveness (*Engelman et al.*, 2019).

Postoperative pain may result from various interventions, including sternotomy, thoracotomy, chest drains and leg vein harvesting. One study found that maximal pain intensity in CS was usually moderate (*Mueller et al.*, 2000), but severe acute postoperative pain was also reported elsewhere and more frequently associated with chronic post-sternotomy pain (*Lahtinen et al.*, 2006).

Traditionally, opioids were considered the mainstay for pain management after CS based on a predictable hemodynamic profile. Acknowledged risks associated with

their use (e.g., hyperalgesia, opioid dependence, respiratory depression, nausea and vomiting, immunosuppression, ileus, delirium, prolonged postoperative recovery) fueled that which now represents a central tenet in the ERAS paradigmmultimodal analgesia (MA) (Ochroch et al., 2020). MA built on drug combinations is not faultless (Shanthanna et al., 2020); N-methyl-D-aspartate (NMDA) antagonists may bring about sympathetic hyperactivity, central alpha-2 agonists can cause bradycardia and hypotension, and nonsteroidal antiinflammatory agents are associated with renal dysfunction and abnormal clotting.

Regional anesthesia/analgesia (RA) represents a valid alternative for the MA repertoire.

It obviates many of the drawbacks of drug-based MA strategies, albeit with its challenges (Mittnacht et al., 2019). Classical neuraxial techniques such as thoracic epidural anesthesia (TEA) and landmark-based paravertebral blocks (PVBLM) constituted the standard regional approach to ensure chest wall pain relief before ultrasound (US) virtually revolutionized RA. Bleeding complications (e.g., spinal epidural hematoma (SEH)) were the primary concern regarding the use of TEA and PVBLM in CS (Horlocker et al., 2018). This may explain to some extent why CS fell behind other surgical specialties regarding the large-scale implementation of ERAS programs. Since its inception, US-guided RA has helped improve existing techniques (i.e., PVB) and favored the design

of new ones. Specifically, real-time US needle-tracking is essential to perform chest wall fascial plane blocks (CWFPB) (Kelava et al., 2020).

Delivery of local anesthetics (LA) between myofascial layers spares the neuraxium and blocks the nerves as they course within that tissue plane. Reasons for the growing popularity of CWFPB include (1) ease of performance; (2) excellent safety profile; (3) good efficacy in various clinical settings.

AIM OF THE WORK

o evaluate the efficacy of postoperative bilateral US guided Pecs block on postoperative pain control in patients undergoing cardiac surgery through mid-line sternotomy.

ANATOMY OF THE THORACIC WALL

or adequate treatment of patients after cardiac surgery, Anesthesiologists as those responsible for pain management, as well as surgeons, should have a complete understanding of the anatomy of the thoracic wall (*De la Pared*, 2006).

Anatomy of the thoracic wall:

Skeleton of the thoracic wall is formed by the twelve thoracic vertebrae posteriorly, the sternum anteriorly and, on each side, by the twelve ribs and the respective costal cartilage (Fig 1)

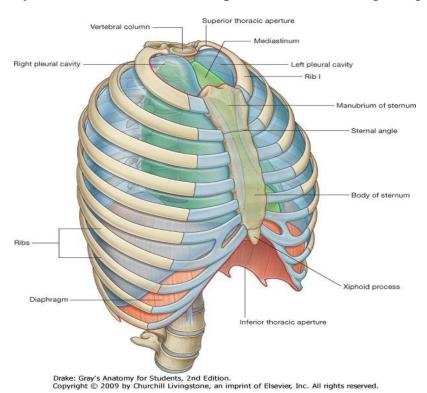


Figure 1: Skeleton of the thoracic wall (gray's anatomy for students, 2^{nd} edition 2009).