

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Correlation of Serum Uric Acid Levels with Coronary Flow in Patients with ST-segment Elevation Myocardial Infarction undergoing Primary Coronary Intervention

Thesis

Submitted for Partial Fulfillment of Master's Degree in Cardiology

By

Abdelrahman Ahmed Abdelrahman Sharafeldin M.B.B.Ch. Faculty of Medicine, Misr University for Science and Technology

Under Supervision of **Prof. Dr. Walid Abdel Azim El Hammady**

Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Walid Mohamed Sallam

Lecturer of Cardiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University Cairo-Egypt-2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Walid Abdel**Azim El Hammady, Professor of Cardiology,
Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Walid**Mohamed Sallam, Lecturer of Cardiology,

Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Abdelrahman Ahmed Abdelrahman Sharafeldin

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Hyperuricemia	4
No Reflow Phenomenon	19
Patients and Methods	42
Results	50
Discussion	68
Limitations	72
Summary	73
Conclusion	75
Recommendations	76
References	77
Arabic Summary	

Tist of Tables

Table No	. Title	Page No.
Table 1:	Risk factors and proposed coronary no-reflow phenomena	_
Table 2:	The demographic data and risk fathe studied group.	
Table 3:	Comparison between hyperum normal group as regard demogrisk factors and type of MI	graphic data,
Table 4:	Comparison between both group angiographic TIMI flow score & Blush Grade and thrombus grade	z Myocardial
Table 5:	Comparison of angiographic find groups between hyperuricemia group regarding No of v echocardiographic finding and UA	and normal essels, CV,
Table 6:	Comparison of echocardiographic both groups between hyperus normal group regarding No of echocardiographic finding and UA	ricemia and vessels, CV,
Table 7:	Comparison between hyperur normal group regarding investigations	laboratory
Table 8:	Comparison between hyperur normal group regarding MACE	
Table 9:	Comparison between patients wand those without regarding data, hyperuricemia, risk factor thrombus garde and EF	demographic rs, MBG III,
Table 10:	Logistic regression analysis associated with TIMI III	

Tist of Tables cont...

Table No	. Title		Page No.
Table 11:	Comparison between and those without data, hyperuricemia, thrombus grade and E	regarding o	demographic s, TIMI III,
Table 12:	Logistic regression associated with MBG	v	

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	A, No reflow is a process that starts the ischemic period and then in during reperfusion. B, Various mechare implicated in the genesis of reflow phenomenon.	icreases nanisms the no-
Figure 2:	The gender distribution among the group.	
Figure 3:	The incidence of risk factors amostudied group	-
Figure 4:	Comparison between hyperuricem normal group as regard age	
Figure 5:	Comparison between hyperuricem normal group as regard the incidence factors.	e of risk
Figure 6:	Comparison between hyperuricem normal group regarding TIMI flow before and after PCI.	w score
Figure 7:	Comparison between hyperuricem normal group regarding TIMI III	
Figure 8:	Comparison between hyperuricem normal group regarding MBG after P	
Figure 9:	Comparison between hyperuricem normal group regarding MBG III	
Figure 10:	Comparison between hyperuricem normal group regarding thrombus gra	

Tist of Figures cont...

Fig. No.		Title	F	Page No).
Figure 11:	-		hyperuricemia ; EF		. 60
Figure 12:	-		hyperuricemia g UA		. 60
Figure 13:	-		hyperuricemia ; HB		. 62

Tist of Abbreviations

Abb.	Full term
CAD	Coronary artery disease
	Complete blood picture
<i>DM</i>	
ECG	
	End stage renal disease
FH	•
HTN	
<i>IC</i>	·
<i>INR</i>	International normalized ratio
<i>IS</i>	Infarct size
<i>IV</i>	Intravenous
<i>MBG</i>	Myocardial blush grade
<i>MI</i>	Myocardial infarction
MVO	Micro vascular occlusion
PCI	Percutaneous coronary intervention
<i>PPCI</i>	Primary percutaneous coronary intervention
<i>PTD</i>	Pain to door
<i>SD</i>	Standard deviation
SPSS	Statistical Package for the Social Science
STEMI	ST-segment elevation myocardial infarction
TIMI	Thrombolysis in myocardial infarction risk score

Introduction

cute myocardial infarction is the most severe manifestation of coronary artery disease, which causes more than 2.4 million deaths in the USA, more than 4 million deaths in Europe and northern Asia, and more than a third of deaths in developed nations annually (Yeh et al., 2010). Primary PCI is the treatment of choice for acute coronary syndrome with STEMI (Nichols et al., 2014). The reopening of the culprit coronary artery, however, does not necessarily translate into improved tissue perfusion, despite imaging evidence that the target stenosis was adequately removed or bypassed. This phenomenon is known as No-Reflow.

Hyperuricemia is one of the important risk factors for CAD. It is associated with an increased risk of mortality and morbidity.

While many studies have proved the correlation between hyperuricemia and major cardiac events in patients presenting with STEMI and undergoing primary PCI the assessment of the relation between hyperuricemia and coronary flow in patients presenting with STEMI and undergoing primary PCI has not been fully evaluated (Ozgur et al., 2017).

Hyperuricemia is known associated with to be cardiovascular disease (CVD), such as coronary artery disease (CAD), stroke and hypertension (Kim et al., 2010) but the role

of serum uric acid (SUA) as an independent risk factor for CVD remains unclear. Many epidemiologic studies have shown that hyperuricemia is frequently noted in patients either with CVD or at a high risk of CVD, such as hypertension, CAD, stroke, heart failure, metabolic syndrome, and peripheral vascular disease [. Most investigators reasoned that SUA may become passively elevated due to the effects of insulin resistance, renal vasoconstriction, and reduced estimated glomerular filtration rate (eGFR) to reduce uric acid excretion by the kidneys (Zhao et al., 2017). However, experimental studies have suggested that SUA may have an independent modulatory or causal role in these conditions (Mazzali et al., 2010). Consistent with these findings, an elevated SUA has been consistently found to predict the development of CAD (Kim et al., 2010). Unfortunately, because many of the subjects with hyperuricemia have comorbidities, it can be difficult to differentiate the role of SUA from the coexistence of the other comorbid conditions. Although multivariable analysis can be used to control for these other conditions, multivariable analysis can be misleading if the associated risk factors are causally linked (Kuwabara et al., 2017). The limitations associated with multivariable analysis as a means for determining causation are well known (Zhao et al., 2017).

AIM OF THE WORK

The aim of this work is to study the effect of Uric acid level as a preventive tool for No-reflow phenomenon in patients presented with acute STEMI undergoing primary PCI.