

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

VULNERABILITY BASED INFRASTRUCTURE FUND ALLOCATION OPTIMIZATION MODEL

By

Mohamed Ahmed Bahaa EL-Din Ahmed El-Khayat

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

VULNERABILITY BASED INFRASTRUCTURE FUND ALLOCATION OPTIMIZATION MODEL

By **Mohamed Ahmed Bahaa EL-Din Ahmed El-Khayat**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Structural Engineering

Under the Supervision of

Prof. Dr. Hesham Maged Osman Dr. Dina Atef Saad

Professor of Construction Engineering and Management, Structural Engineering Department, Cairo University Assistant Professor, Structural Engineering Department, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

VULNERABILITY BASED INFRASTRUCTURE FUND ALLOCATION OPTIMIZATION MODEL

By Mohamed Ahmed Bahaa EL-Din Ahmed El-Khayat

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Hesham Maged Osman

Thesis Main Advisor

Prof. Dr. Dina Atef Saad

Advisor

Prof. Dr. Maged Ezzat Georgy

Internal Examiner

Prof. Dr. Hesham Ahmed Bassiouny

Arab Academy for Science, Technology
and Maritime Transport

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 Engineer's Mohamed Ahmed Bahaa EL-Din Ahmed

Name: EL-Khayat
Date of Birth: 02/09/1991
Nationality: Egyptian

E-mail: Mohamedbahaaa2@Gmail.com

Phone: 002-01068902524

Address: 2 El-Zobeer Ibn EL-Awam St, Old Cairo

Registration 1/10/2015

Date:

Awarding Date: ---/2021

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Hesham Maged Osman

Prof. Dr. Dina Atef Saad

Examiners:

Prof. Dr. Hesham Maged Osman (Thesis main advisor)

Prof. Dr. Dina Atef Saad (advisor)

Prof. Dr. Maged Ezzat Georgy (Internal examiner)
Prof. Dr. Hesham Ahmed Bassiouny (External examiner)

Arab Academy for Science, Technology

and Maritime Transport

Title of Thesis:

Vulnerability Based Infrastructure Fund Allocation Optimization Model

Key Words:

Optimization; Funding Decisions; Vulnerability; Deterioration Modeling; Infrastructure Rehabilitation.

Summary:

Infrastructure bills are in permanent increase due to the continuous deterioration with time, and the presence of a gap between the infrastructure rehabilitation needs and the available fund. Accordingly, a fund allocation model became necessary to be created to face this everlasting problem. Many budget allocation models were created, but all these efforts failed to face the fast deterioration rates for infrastructure assets due to neglecting the effect of some factors that accelerate the deterioration rates beyond the expected. The research purpose is to develop a new fund allocation optimization model which maximizes the assets overall physical conditions and with the presence of funding constrains taking in consideration the effect of normal deterioration rates and the vulnerability factors effect by using Markov Chains stochastic deterioration modeling.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Ahmed Bahaa EL-Din Ahmed Date: / /2021

Signature:

Dedication

To My Mother & Father

Acknowledgments

Foremost, Ι would like to express my sincere gratitude supervisors Dr. Prof. Hesham Osman, and Dr. Dina Atef Saad, for their valuable supervision, continuous support, and guidance throughout all stages of my MSc. thesis progress. Their academic and technical experience directed me to make the current thesis achievable, which made me very thankful to them. I would also like to gratefully thank all the participated interviewees for their valuable time providing me with the relevant information and necessary data required to build the thesis model.

Moreover, I would like to express my appreciation to my managers Eng. Muhammad Yahia; Chief Executive Officer of Porto Group Holding Company and Eng.Ali EL-Hadidi; Deputy Manager of Porto Group Holding Company for their continuous support and allowing time for completing the thesis, along with providing me the relevant documents that support the research. In addition, I wish to express my deep thanks to the person who has always stood side by side, day and night beside me, in addition to providing me with adequate advices, patience and support; my closet friend and brother, Hossam EL-Din Refaat.

Nobody has been more important to me in the pursuit of this project than the members of my family. I would like to thank my parents and my sister whose love and guidance are with me in whatever I pursue. They are the ultimate role models. Finally, I express my regards to everyone who participated in the current research and supported me in any respect of the study.

Thank you all...

Table of Contents

DISCLAIM	ER	I
DEDICATI	ON	ІІ
ACKNOW	LEDGMENTS	III
TABLE OF	CONTENTS	IV
LIST OF T	ABLES	VI
LIST OF F	IGURES	VII
ABSTRAC'	Γ	VIII
Снартер 1	: Introduction	1
_		
1.1.	Background	
1.2.	Research Motivation	
1.2.1 1.2.2		3
1.2.2		
	Research Objective	
1.4.	Research methodology	
1.5.	Research organization	
_	2 : LITERATURE REVIEW	
2.1.	Introduction	
2.2.	Infrastructure Asset Management & Optimization Models	6
2.3.	Infrastructure Vulnerability	
2.4.	Infrastructure Deterioration	
2.4.1		
2.5.	Stochastic Deterioration behavior Modeling	
2.6.	Genetic Algorithms Optimization	
2.7.	Summary	
Снартер 3	: Proposed Methodology	
3.1.	Introduction	
3.1. 3.2.	Research Framework	
3.2. 3.2.1		
3.2.2		
3.2.3		
3.2.4	•	
3.2.5	~	
3.2.6	. Fund Allocation Optimization	24
3.3.	Summary	25
CHAPTER 4	: Vulnerability-Based Deterioration Behavior Mod	ELLING26
4.1.	Introduction	26
4.2.	Infrastructure Assets Vulnerability	
4.3.	Vulnerability Factors Assessment	
4. <i>4</i> .	Vulnerability Factors Assurance	
4.5.	Vulnerability Index	
4.5. 4.6.	Markov Chains Stochastic Deterioration Model	
4.7.	Summary	

CHAPTER	5: MATHEMATICAL FORMULATIONS OF THE FUND-ALLOC	ATION MODEL
AND THE	OPTIMIZATION PARAMETERS	45
5.1.	Introduction	45
5.2	Optimization Model Computation	
5.2.	1	
5.2.		
5.2.		
5.2.		
5.2.		
5.2.	6. Generic Algorithms Solver Application	50
5.2.	7. Analyze the Optimization Model Results	51
<i>5.3</i> .	Summary	52
CHAPTER	6 : CASE STUDY	53
6.1.	Introduction	53
6.2.	Case Study Description	53
6.2.		
6.2.	2. Road Network Actual Physical Condition	54
6.2.	3. Markov Chains Deterioration Modeling	55
6.3.	Case Study Results and Analysis	
6.4.	Summary	
CHAPTER	7: CONCLUSIONS	63
7.1.	Summary	
7.2	Research contribution	
7.3.	Limitations and Future research work	
REFEREN	ICES	66
	X A: SAMPLE QUESTIONNAIRE	
APPENDE	X B: QUESTIONNAIRE RESPONSES	84
APPENDE	X C: QUESTIONNAIRE ANALYSIS	92

List of Tables

Table 1-Countries Expenditure in the Infrastructure Department According to (Shaw
G., et al., 2012).
Table 2-Vulnerability factors and their measuring units
Table 3-Deterioration Factors Table
Table 4-Road Network Details
Table 5-Road Network IRI Readings54
Table 6-IRI Categories and score values
Table 7-Value of Vulnerability Factors Weights56
Table 8-Interventions Costs
Table 9-Results Summary of the Optimization Experiments
Table 10-Appendix B - Experts Information85
Table 11-Appendix B - Vulnerability Factors Codes86
Table 12-Appendix B - Experts Responses On Vulnerability Factors Influence87
Table 13-Appendix B - Experts Responses On Vulnerability Factors Weights88
Table 14-Appendix B - Experts Responses On Yearly Transition Probability Matrix89
Table 15- Appendix C - Experts Responses Results and Analysis on Vulnerability
Factors93
Table 16 Appendix C - Experts Responses Results and Analysis on Transition
Probability Matrix93

List of Figures

Figure 1-Deterioration Factors Categories According to (Hossein Alzubaidi and Rolf	
Magnusson, 2002)	.14
Figure 2-Deterioration Factors Categories According to (Sharad S. Adlinge and Prof.	•
A.K. Gupta, 2009)	.15
Figure 3- Optimization Model Frame Work Phases	.20
Figure 4-Relation Between Road Physical Condition and Intervention Cost	.24
Figure 5-Vulnerability Factors Categories	.27
Figure 6-Flooding in Egypt	.29
Figure 7-Example for Markov Chains Transition Probability Techniques	.40
Figure 8-Impact of asset's vulnerability on the deterioration behavior	.40
Figure 9-Intervention Magnitude	.46
Figure 10-Improvement Effect Illustration Diagram	.47
Figure 11- Intervention Methodology	.47
Figure 12-Three Intervention Methodologies	.49
Figure 13-Optimization Model Variables	.50
Figure 14-Initial Condition Rating Using IRI Categories and score values	.55
Figure 15-1-Year Deterioration Matrix Without Vulnerability Effect	.56
Figure 16-Vulnerability Factors Score	.57
Figure 17-1-Year Deterioration Matrix Under Vulnerability Effect	
Figure 18-Expected Condition Rating Without Intervention after 1-year	.57
Figure 19-Intervention Categories	.58
Figure 20-Optimization Model Objective Function	.59
Figure 21- Optimization Model Constrains	.59
Figure 22- Optimization Model Decision Variables	.60

Abstract

Infrastructure assets are one of the essential assets in any community for its sustainability and livability. Like any asset, infrastructure ones deteriorate with time, thus their bills are in continuous increase. Due to the massive needs for many assets to be intervened after deterioration with the presence of budget constraints, decision makers may take many rehabilitation decisions that may be effective and maybe not. Many efforts were made in order to help those who take the rehabilitation decisions to select the best and effective assets to be rehabilitated, however, most of these decisions weren't effective because most of these efforts didn't consider the fast deterioration of infrastructure assets due to its vulnerability to external factors. Accordingly, a fundallocation optimization model that maximizes the physical performance of infrastructure, while considering budget constraints and infrastructure vulnerability factors using stochastic modeling is proposed in this research. Before developing the model, the vulnerability factors were previously selected knowing the degree of influence for each one, after that model will calculate the vulnerability index for each asset as differs from an asset to another. The vulnerability index is then used in the stochastic deterioration model using Makrov chain in order to develop the yearly expected condition index for each asset under the vulnerability effect. To measure the performance of the model, it is applied to a road network as one type of infrastructure. Thus, the unexpected factors that accelerates road deterioration by increasing its vulnerability were captured using this study, including excessive traffic loading, neighboring disturbance, climate change, etc. Applying the model and comparing it against the existing models, results demonstrated rationality behind the generated funding decisions using the proposed model, and the cumbersome consequences of ignoring vulnerability. Thus, the model can help policymakers make realistic funding decisions to maintain infrastructure performance.