

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

INVESTIGATING DESIGN CODES CRITERIA FOR POST TENSIONED CONCRETE SLABS

By

AHMED MAGDY ABD ELMONEM BARAKA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Structural Engineering

INVESTIGATING DESIGN CODES CRITERIA FOR POST TENSIONED CONCRETE SLABS

By

AHMED MAGDY ABD ELMONEM BARAKA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Under the Supervision of:

Prof. Dr. Hany Ahmed Abdalla

Professor of Concrete structures Faculty of Engineering, Cairo University

INVESTIGATING DESIGN CODES CRITERIA FOR POST TENSIONED CONCRETE SLABS

By

AHMED MAGDY ABD ELMONEM BARAKA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the

Examining Committee

Prof. Dr. Hany Ahmed Abdalla

Professor of Concrete Structures, Cairo University

Prof. Dr. Akram Mohamed Torkey

Professor of Concrete Structures, Cairo University

Prof. Dr. Ahmed Ali Hassan Abdelwahab

Building Materials Research Institute

Housing & Building National Research Center, Egypt

(Thesis Main Advisor)

(Internal Examiner)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2021

Engineer's Name: AHMED MAGDY ABD ELMONEM BARAKA

Date of Birth:1/2/1994Nationality:EgyptianRegistration Date:01/03/2017Awarding Date:/ /2021Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Hany Ahmed Abdalla

Professor of Concrete Structures, Cairo University

Examiners:

Prof. Dr. Hany Ahmed Abdalla (Thesis Main Advisor)

Professor of Concrete Structures, Cairo University

Prof. Dr. Akram Mohamed Torkey (Internal Examiner)

Professor of Concrete Structures, Cairo University

Prof. Dr. Ahmed Ali Hassan Abdelwahab (External Examiner)

Building Materials Research Institute, Housing & Building National Research Center, Egypt

Title of Thesis:

INVESTIGATING DESIGN CODES CRITERIA FOR POST TENSIONED CONCRETE SLABS

Key Words:

Finite element analysis - Deflection - Stresses - Cost analysis - Programming

Summary:

Numerical model for post tensioned slab using the finite elements programs (RAM), (ADAPT) and nonlinear finite element program (ANSYS v19) and its verification with experimental counterpart will be presented. Linear and non-linear analysis for reinforced concrete elements can be obtained by (RAM), (ADAPT) programs and ANSYS software. This is a study of both ACI code [19] and BS code [21] in design post tension slab system by using of Ram program and Adapt program. Making two models of slab having three spans ranging between (9-10-9)m for model 1 and (9-5-9)m for model 2 to save a code requirements as columns distribution, columns dimension and opening requirements. And then design slab model by using ACI code [19] and BS code [19] by using Ram program and Adapt program. The ECP 203-2018 code [23] is not clear when it comes to designing post tensioned concrete slabs in terms of the requirements to be followed, the permissible limits and also the design method. So some conditions and equations will be proposed that help in designing post-tensioned concrete slabs by using the ECP 203-2018 code [23]. A cost benefit analysis may be a procedure by which organizations can analyze results, techniques or projects, or determine a worth for intangibles. Making a model having area equal 2755 m². Using model to affirm that using P.T system saving 10% to 20% of total cost and can increase. Solving model by using (Ram) program. Writing a simple computer program to design uncomplicated post-tensioned floor systems taking into consideration the recommendations of the ACI code [19] and BS code [21].

Disclaimer

I hereby declare that this thesis is my own original work, and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Date:

Signature:

ACKNOWLEDGMENTS

I would like to show my gratitude for my supervisor (Prof. Dr. Hany Abdalla) for their guidance, advices, support and valuable discussions review during my Master, and their great efforts to achieve my objectives.

I want also to thank my father, my mother, and all my friends who always help me for the success. I would not have to achieve this goal without their help and support.

Ahmed Baraka April 2021

Table of contents

Disclaimer	
Acknowledgement	
Table of contents	
List of tables	
List of figures	
Abstract	VIII
Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Objective and Scope	1
1.3 Organization of the thesis	1
Chapter 2: Literature Review	2
2.1 Introduction	2
2.2 Related work	3
Chapter 3: Numerical modeling	25
3.1 Introduction	25
3.2 Finite element method	25
3.2.1 Solid 65 element	25
3.2.2 Link 180 element	26
3.3 Verification of the Finite Element Model	27
Chapter 4: Parametric Study	32
4.1 Introduction	
4.2 RAM and Adapt Concept Models	
4.3 Comparison of RAM and ADAPT results	
4.4 A proposed design for post tensioned concrete slabs using Egyptian code	
4.5 EXCEL Program to solve post tensioned slabs	54
4.6 Cost Analysis	
Chapter 5: Summary and Conclusion	69
5.1 Summary	
5.2 Conclusion.	
5.3 Recommendations for future work	70
Appendix (A)	71
Appendix (B)	
References	86

List of tables

Table 3.1 Different parameters used to define each finite element member in AN	SYS model
in N, mm units	29
Table 3.2 Stiffness degradation of experimental specimen	30
Table 4.1: Details of reinforced concrete slab for two models	36
Table 4.2: Details of post tensioned slab for two models	36
Table 4.3: Details of reinforced concrete slab for model	66
Table 4.4: Cost estimation for reinforced concrete slab for model	66
Table 4.5: Details of post tensioned slab for model	67
Table 4.6: Cost estimation for post tensioned slab for model	68

List of figures

Figure 2.1 : Height comparison of R.C.C. & PT slab design	4
Figure 2.2: Tendon profile for the slab without drop	4
Figure 2.3: Tendon profile for the slab with drop	4
Figure 2.4 : Variation of rate for each floor system	4
Figure 2.5 : Relation of specimen to prototype structure	5
Figure 2.6: Interior slab-column connection specimen with drop panel and its dimensions.	6
Figure 2.7 : Pattern of lateral cyclic displacement	6
Figure 2.8 : Lateral force-drift result of specimen	6
Figure 2.9 : The specimens (Unit: mm)	7
Figure 2.10 : Arrangement of un-bonded tendons (Unit: mm)	8
Figure 2.11 : Crack patterns on the top surface of the typical post-tensioned specimen	8
Figure 2.12: Crack patterns on the top surface of the ordinary reinforced specimen	8
Figure 2.13 : Dislodged Concrete	9
Figure 2.14 : Corroded Tendons	
Figure 2.15 : The Underside of a Hydraulic Jack	9
Figure 2.16: Stress-strain dependence in compression test for dense concrete (DC) and	
lightweight aggregate concrete (LC) with the same strength	.10
Figure 2.17: Maps of deflection from self-weight	.10
Figure 2.18: Maps of deflection caused by pre-stressing	.11
Figure 2.20 : Flexural failure (conventional HCS)	.12
Figure 2.21 : Shear Failure (Post-tension HCS)	.12
Figure 2.22 : General layout of the un-bonded post-tensioned slabs	.13
Figure 2.23: Test setup showing loading tree	
Figure 2.24: Load versus central deflection for Test	.13
Figure 2.25: Simply supported pre-stressed slab	.14
Figure 2.26 : pre-stressed concrete ribs cross-section dimensions	14
Figure 2.27: Typical post-tensioned composite slab	
Figure 2.28: Specimens 1 and 2 details	.16
Figure 2.29: Specimen 3 details	16
Figure 2.30 : Arrangement of testing slabs	.17
Figure 2.31: Details of test slab and test arrangement	.18
Figure 2.32 : Load–concrete strain diagrams of tested slabs	.18
Figure 2.33 : Load-tendon strain diagrams of tested slabs	18
Figure 2.34: Typical post-tensioned composite slab	.19
Figure 2.35: Total long-term deformations through the slab thickness of samples	.19
Figure 2.36: Finite element mesh for quarter of the slab	.20
Figure 2.37: Stress distribution in the concrete from the FE model for the Test T4	.20
Figure 2.39: Layout of the prototype post-tensioned lift slab and plan of test specimens	.21
Figure 2.40 : Layout and elevation of a test frame	.21
Figure 2.41 : Edge deflection versus load for all three specimens	.22
Figure 2.42: Experimental bending tests	.22

Figure 2.43: Structural dimensions and sensor layout of beams PC1 to PC4	23
Figure 2.44: The tested beam: post-tensioned cables	24
Figure 2.45 : Center-span deflection vs pre-stress force N	24
Figure 3.1: Geometric shape for link180 element	
Figure 3.2: Geometric shape for solid65 element	26
Figure 3.3: Plan and section elevation of the reinforcement detailing and dimensions	27
Figure 3.4: Finite element model for specimen	28
Figure 3.5: Simplified compressive uniaxial stress-strain curve for concrete from (ACI) c	od28
Figure 3.6: Stress strain curve for concrete considered in ANSYS model	29
Figure 3.7: Stress-strain curve for steel reinforcement from (ACI) code	29
Figure 3.8: Shape of experimental specimen crack after loading	30
Figure 3.9: Shape of theoretical specimen crack after loading in ANSYS model	31
Figure 3.10: Comparison between experimental and ANSYS model Load-Deflection curve	
Figure 4.1: Plan dimensions of model (1)	32
Figure 4.2: MODEL (1) Slab and column element view in mesh input layer in RAM prog	gram
and ADAPT program	
Figure 4.3: Plan dimensions of model (2)	33
Figure 4.4: MODEL (2) Slab and column element view in mesh input layer in RAM prog	
and ADAPT program	33
Figure 4.5: MODEL (1) Longitude design spans and Latitude design spans	37
Figure 4.6: MODEL (2) Longitude design spans and Latitude design spans	37
Figure 4.7: MODEL (1) Default tendon uniform distributions in the two direction	37
Figure 4.8: MODEL (2) Default tendon uniform distributions in the two direction	37
Figure 4.9: MODEL (1) Longitude and Latitude for cable (1) distribution	38
Figure 4.10: MODEL (1) Longitude and Latitude for cable (2) distribution	39
Figure 4.11: MODEL (2) Longitude and Latitude for cable (1) distribution	39
Figure 4.12: MODEL (2) Longitude and Latitude for cable (2) distribution	40
Figure 4.13: Model (1): Deflection for RC concrete by using ACI code	41
Figure 4.14: Model (1): Deflection for PT concrete by using ACI code	41
Figure 4.15: Model (1): Deflection for RC concrete by using BS code	42
Figure 4.16: Model (1): Deflection for PT concrete by using BS code	42
Figure 4.17: Model (1): Deformation shape	42
Figure 4.18: Model (1): Deflection of PT and RC slabs using ACI and BS codes	43
Figure 4.19: Model (1): Negative stress for PT and RC slabs using ACI and BS codes	43
Figure 4.20: Model (1): Positive stress for PT and RC concrete by using ACI and BS code	e43
Figure 4.21: Model (2): Deflection for RC concrete by using ACI code	44
Figure 4.22: Model (2): Deflection for PT concrete by using ACI code	44
Figure 4.23: Model (2): Deflection for RC concrete by using BS code	45
Figure 4.24: Model (2): Deflection for PT concrete by using BS code	45
Figure 4.25: Model (2): Deformation shape	46
Figure 4.26: Model (2): Deflection for PT and RC concrete by using ACI and BS code fo	r
span(9)m	
Figure 4.27: Model (2): Deflection for PT and RC concrete by using ACI and BS code fo	r
span(5)m	47

Figure 4.28: Model (2): Negative stress for PT and RC concrete by using ACI and BS	
code	47
Figure 4.29: Model (2): Positive stress for PT and RC concrete by using ACI and BS	
code	47
Figure 4.30: Allowable Stresses	50
Figure 4.31: Plan dimensions of model	51
Figure 4.32: Longitude design spans and Latitude design spans	52
Figure 4.33: Default tendon distributions in the two orthogonal directions	52
Figure 4.34: Longitude and Latitude cables distribution	52
Figure 4.35: MODEL (1) Longitude and Latitude for cable (1) distribution	53
Figure 4.36: MODEL (1) Longitude and Latitude for cable (2) distribution	53
Figure 4.37: Deflection for post tensioned concrete slab by using ECP code	54
Figure 4.38: Stresses for post tensioned concrete slab by using ECP code	54
Figure 4.39: Flowchart to show design steps	55
Figure 4.40: Introduction page.	56
Figure 4.41: Properties of concrete mix and P.T system	56
Figure 4.42: Properties of reinforcing bars and SSR system	57
Figure 4.43: Properties of concrete mix and p.t system	57
Figure 4.44: Properties of reinforcing bars and SSR system	58
Figure 4.45: Input data for proposed program.	58
Figure 4.46: plan and cross section for P.T slab.	59
Figure 4.47: Properties of section, losses, check of punch and check vibration	
Figure 4.48: Moment calculations for column and field strips	60
Figure 4.49: Allowable and check for positive and negative stresses	61
Figure 4.50: Allowable and check for deflections.	
Figure 4.51: Plan details.	
Figure 4.52: Cross sections details.	62
Figure 4.53: MODEL Slab and column element view in mesh input layer in RAM	
	64
Figure 4.54: MODEL Slab and column element view in mesh input layer in RAM	
programprogram	
Figure 4.55: MODEL Default tendon distribution in the Longitude direction	
Figure 4.56: MODEL Default tendon distribution in the latitude direction	
Figure 4.57: Result of Cost estimation for post tensioned Slab of model	68

Abstract

Post tensioned slabs started to be widely used instead of flat slabs specially in long span floors. There is weakness in the analysis of post tensioned slab systems in terms of the choice of design code and analysis software. In this research, the finite element programs RAM and ADAPT are used to analyze post tensioned slabs with different configurations. Two models are analyzed according to the requirements of the ACI [19] and the BS [21] building codes. The parameters considered include span of the slab, column size, slab thickness, and pre-stressing forces. The results of the RAM and ADAPT programs are also verified against those of the nonlinear finite element program ANSYS. The analytical results are also verified against recommendations of international construction firms working in this field in Egypt. The comparison of results includes deflections, straining actions, and stresses. The ECP 203-2018 code [23] is not clear when it comes to designing post tensioned concrete slabs in terms of the requirements to be followed, the permissible limits and also the design method. So some conditions and equations will be proposed that help in designing post-tensioned concrete slabs by using the ECP 203-2018 code [23]. A cost analysis is performed to compare between post-tensioned slabs and the corresponding reinforced concrete flat slabs. The research also includes writing a simple computer program to design regular post-tensioned floor systems taking into consideration the recommendations of the ACI code [19].