

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Convalescent Plasma Transfusion for Treatment of Corona Virus Disease 2019 (COVID-19) Infection-: A Systematic Review

Systematic Review/Meta-Analysis

Submitted for Partial Fulfillment of Master Degree in **Anesthesiology**

By

Ghoson Mohamed Anter Abd Elrahman

M.B.B.CH- Resident in Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Sameh Michel Hakim

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr: Ashraf Mahmoud Hazem Elhakim

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Akram Mohamed Amer

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Sameh Michel Hakim**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Ashraf Mahmoud Hazem Elhakim**, Assistant Professor of Anesthesia,
Intensive Care and Pain Management, Faculty of
Medicine, Ain Shams University, for his sincere efforts,
fruitful encouragement.

I am deeply thankful to **Dr. Akram Mohamed**Amer, Lecturer of Anesthesia, Intensive Care and Pain

Management, Faculty of Medicine, Ain Shams University,
for his great help, outstanding support, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Ghoson Mohamed Anter Abd Elrahman

Tist of Contents

Title	Page No.
List of Tables	i
List of Appendices	ii
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Search Methodology	6
Results	11
Discussion	44
Conclusion	52
Summary	53
References	55
Appendix	69
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table 1:	Summary of included randomize studies (RCTs) on CPT for C patients	COVID-19
Table 2:	Summary of included non rastudies of intervension (NRSIs) or COVID-19 patients.	n CPT for
Table 3:	Risk of Bias Assessment randomized Studies using (RoBAN	
Table 4:	Summary of treatment outcomes convalescent plasma therapy in racontrol studies (RCTs)	ndomized
Table 5:	Summary of treatment outcomes convalescent plasma therapy randomized studies of intervension	in non

Tist of Appendices

App No.	Title	Page No.
Appendix 1:	Mortality rate in CPT group versu	
Appendix 2:	Clinical improvement in CPT group control group.	_
Appendix 3:	Time to clinical improvement in C versus control group.	
Appendix 4:	Invasive mechanical ventilation hospital stay in CPT group versugroup	ıs control
Appendix 5:	Discharge from hospital in CF versus control group.	
Appendix 6:	Duration of hospital stay in Cl versus control group.	
Appendix 7:	Viral load in CPT group versu	
Appendix 8:	ICU length of stay in CPT grou	
Appendix 9:	Improvement of inflammatory m CPT group versus control group	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	PRISMA flowchart	12
Figure 2:	Risk of Bias 2 (ROB 2)	29

Tist of Abbreviations

Abb.	Full term
\overline{AE}	Adverse events
	Acquired immunodeficiency syndrome
	Alanine aminotransferase
	Body Mass Index
	Coronary artery disease
	Cluster of differentiation 4
	Congestive heart failure
	Confidence interval
	Chronic Kidney Disease
	Chronic Obstructive Pulmonary Disease
	Coronavirus disease 2019
	Convalescent plasma
	Convalescent plasma therapy
	Computed tomography
	Cardiovascular system
	Diabetes mellites
	Extracorporeal membrane oxygenation
	Extracorporeal membrane oxygenation
	US Food and Drug Administration
	Fraction of inspired oxygen
	High flow oxygen
	Human immunodeficiency virus
HR	Hazard ratio
<i>HTN</i>	Hypertension
	Intensive Care Unit
<i>IgA</i>	ImmunoglobulinA
	Immunoglobulin G
	Immunoglobulin M
	Interleukin-1
<i>IL6</i>	Interleukin-6
<i>IMV</i>	Invasive Mechanical Ventilation
<i>IQR</i>	Interquartile range

Tist of Abbreviations cont...

Abb.	Full term
IOR	Interquartile range
=	Lactate dehydrogenase
	Mechanical ventilation
	Middle East Respiratory Syndrome
	Mechanical Ventilation
	Neutralizing antibodies; ab, antibodies
	National Health Commission of the people's
1,110	Republic of China
NIV	Non-invasive ventilation
	Non randomized studies of intervension
O_2	·
	Obstructive sleep apnea
	Polymerase chain reaction
	Preferred Reporting Items for Systematic
	Reviews and Meta-Analyses
<i>RBD</i>	Receptor-binding domain
<i>RBD</i>	Receptor-binding domain
RCTs	Randomized control trials
RCU	Respiratory care unit
<i>RCUs</i>	Respiratory care units
<i>RTCI</i>	Recovery Time from Critical Illness
S COV-2	Severe acute respiratory syndrome corona
	virus 2
SARS-CoV-2	Severe acute respiratory syndrome
	$coronavirus\ 2$
SD	Standard deviation
SD	Standard deviation
	Standard of care
	Standard of care
	Transfusion related acute lung injury
	Transfusion related acute lung injury
WHO	World health organization;

Introduction

The coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an outbreak originated from Wuhan, China in late 2019. COVID-19 represents a major global challenge with more than 200 million confirmed cases and over 4.5 million deaths till now. Coronaviruses are a large family of viruses that cause a common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV).

The causative agent -SARS-CoV-2- is presented as a major challenge because, as a new virus, it has no specific therapy. Consequently, early responses focused on optimizing respiratory care, managing thrombotic and inflammatory complications with anticoagulation and corticosteroids and using existing antiviral therapies which, with the exception of remdesivir proved ineffective. Although chloroquine, hydroxychloroquine, antivirals and the antibiotic azithromycin are used for the treatment of COVID-19, no specific drug or treatment has yet proven effective. ^{3,4}

Convalescent plasma seems to retain its importance as an alternative treatment method for patients with COVID-19 infection until a specific effective anti-viral agent or vaccine is found based on the concept of passive immunization.

Convalescent plasma (CP) from donors has emerged as an option for prevention and treatment of COVID-19 considering that it can rapidly be made available and theoretically, could be used for providing immediate immunity to susceptible individuals through viral neutralization.⁵

The convalescent plasma is likely to contain high levels of neutralizing antibodies against the SARS-CoV-2 virus, which when transfused to patients with acute COVID-19 infection, can provide a degree of passive immunity. Though the exact mechanism of how these antibodies in plasma clear the viral load is still not clear, multiple mechanisms including modulatory antiviral and immune actions have been hypothesized.⁵

The premise of convalescent plasma treatment is that it is most effective in patients with a high viral titer, so it is suitable for patients with rapid disease progression or who are severely or critically ill. Patients should be infused with convalescent plasma early in the course of the disease when the body has not yet produced IgG antibodies. After infusion, the body obtains high levels of IgG antibodies that neutralize the virus, decrease repeated stimulation of the immune system by killer T cells, improve the humoral immune response, prevent cytokine storms and shorten the course of disease. Theoretically, the best time to infuse patients with convalescent plasma is in the early stage of the disease, when Ig G antibodies have not been produced, the nucleic acid test is strongly positive, and the viral

load is high. Because that the antigen-antibody reaction time is approximately 24 h, 24-48 h after infusion of convalescent plasma is likely the best time to evaluate treatment efficacy.^{6,7}

The recommended minimum dose for one patient is one unit (200 mL per unit) of CP. Second unit can be administered 24-48 h following the completion of the transfusion of the first unit of convalescent plasma and can be repeated many times. Scientific rationale of this application is to avoid volume overload in these patients who are unstable in terms of cardiopulmonary functions.⁶

The risk of transfusion related adverse events is therefore likely identical to the risk associated with standard plasma, transfusion-associated namely. circulatory overload. transfusion-related acute lung injury, and allergic reactions. The incidence of adverse events is very minimal in CP therapy.⁴

The safety measures for CP transfusion such as sterility, precautionary measures for infectious disease transference such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) etc., and prevention of serum sickness type of reactions should be taken.⁸

However, evidence for therapeutic convalescent plasma efficacy still requires definitive support from large randomized clinical trials (RCTs). As a result, there remains a lack of consensus on convalescent plasma use in hospitalized COVID-

19 patients. Smaller RCTs, matched control studies, and caseseries studies investigating convalescent plasma therapy for COVID19 have emerged and provided a positive efficacy signal. Most of these studies, however, lacked appropriate statistical power or were terminated early.

There is a lack of structured systematic reviews looking into the efficacy of convalescent plasma therapy for COVID-19 patients. Therefore, we have conducted this systematic review to provide an insight into the clinical effectiveness of convalescent plasma as a potential therapy for COVID-19 patients.