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Summary

Chapter one: This chapter includes a general introduction on
potentiometry, the basic principles, theory, historical background,
characteristics and classification of potentiometric as well as optical
sensor. This chapter gives brief introduction about glass-ceramic and
fabrication of reference electrodes, as well.

Chapter two: This chapter covers recycling of laboratory glass ware
(Pyrex) through the preparation of a low thermal expansion and
chemically durable borosilicate glass-ceramic (BsGC) using Kaolin and
Pyrex. As well as preparation of nano-porous ceramic to avoid errors
originated from screening effect of porous glass frit. Low thermal
expansion and high chemical durability ceramics are advantageous in
many applications such as lab supplies, corning ware, automobile
components, and other low expansion products that are resistant to
thermal shock. Kaolin and borosilicate were chosen for the preparation
of glass-ceramic, because they have low thermal expansion and good
chemical durability. BsGC was prepared by sintering borosilicate glass
waste (e.g., Pyrex laboratory glassware, household glass) and kaolin at
different temperatures (750-900 ° C). Water absorption method was used
to measure the apparent porosity of the prepared composites. Surface
morphology of the prepared BCGs was investigated using scanning
electron microscopy (SEM). Phase composition of the prepared BGC
samples was characterized sing X-ray diffraction technique (XRD). The
XRD results showed that at sintering of 750 °C a monocrystalline quartz
was only existing. By increasing sintering temperature up to 800°C the
qguartz phase decreased, while at 850 °C the quartz phase completely
disappeared. The sintered BCG composites obtained exhibited low
coefficients of thermal expansion in the range of 48 x 107 °C! and
exhibited high chemical durability. Reference electrodes constructed
with the developed nano-porous ceramic frits exhibited excellent
performance characteristics in terms of flow rate (0.41 - 0.002 uL/h),
potential drift (0.02 mV/hour), pH range (2-12), and impedance (680 Q).
Reference electrodes prepared with nano-porous ceramic materials
exhibited low potential drift, wide pH range, absence of screening effect.
Moreover, decreasing the pore size of the ceramic frits from the micro



