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Summary 
 
Chapter one: This chapter includes a general introduction on 
potentiometry, the basic principles, theory, historical background, 
characteristics and classification of potentiometric as well as optical 
sensor. This chapter gives brief introduction about glass-ceramic and 
fabrication of reference electrodes, as well. 
Chapter two:  This chapter covers recycling of laboratory glass ware 
(Pyrex) through the preparation of a low thermal expansion and 
chemically durable borosilicate glass-ceramic (BsGC) using Kaolin and 
Pyrex. As well as preparation of nano-porous ceramic to avoid errors 
originated from screening effect of porous glass frit. Low thermal 
expansion and high chemical durability ceramics are advantageous in 
many applications such as lab supplies, corning ware, automobile 
components, and other low expansion products that are resistant to 
thermal shock. Kaolin and borosilicate were chosen for the preparation 
of glass-ceramic, because they have low thermal expansion and good 
chemical durability. BsGC was prepared by sintering borosilicate glass 
waste (e.g., Pyrex laboratory glassware, household glass) and kaolin at 
different temperatures (750-900 ° C). Water absorption method was used 
to measure the apparent porosity of the prepared composites. Surface 
morphology of the prepared BCGs was investigated using scanning 
electron microscopy (SEM). Phase composition of the prepared BGC 
samples was characterized sing X-ray diffraction technique (XRD). The 
XRD results showed that at sintering of 750 °C a monocrystalline quartz 
was only existing. By increasing sintering temperature up to 800°C the 
quartz phase decreased, while at 850 oC the quartz phase completely 
disappeared. The sintered BCG composites obtained exhibited low 
coefficients of thermal expansion in the range of 48 x 10-7 oC-1 and 
exhibited high chemical durability.  Reference electrodes constructed 
with the developed nano-porous ceramic frits exhibited excellent 
performance characteristics in terms of flow rate (0.41 - 0.002  μL/h), 
potential drift (0.02 mV/hour), pH range ( 12-2 ), and impedance (680 Ώ). 
Reference electrodes prepared with nano-porous ceramic materials 
exhibited low potential drift, wide pH range, absence of screening effect.  
Moreover, decreasing the pore size of the ceramic frits from the micro 


