

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليه العلوم -قسم الكيمياء

Evaluation of Some Material in Construction of Novel Potentiometric Electrodes

Thesis submitted in partial fulfillment of the degree of master in chemistry

Presented by

Osama Ali Saad Mohamed

B.Sc. (2016) Chemistry department Faculty of science Ain Shams University

Supervised by

Prof. Dr. Ibrahim Husseini Ali Badr

Prof. of Analytical Chemistry, Faculty of science, Ain Shams University

Dr. Abd-Elnaby Mohamed Salam

Lecturer of Inorganic and Analytical Chemistry, Faculty of science, Ain Shams University

كليه العلوم -قسم الكيمياء

Evaluation of Some Material in Construction of Novel Potentiometric Electrodes

A Thesis Submitted by

Osama Ali Saad Mohamed

In Partial Fulfillment of Degree of Master in

(Chemistry)

To

Department of Chemistry Faculty of Science

2021

Ain Shams university

Head of Chemistry department Prof. Dr. Ayman Ayoub Abdel-Shafi

Evaluation of Some Material in Construction of Novel Potentiometric Electrodes

Thesis Advisors	Thesis Approval
Prof. Dr. Ibrahim Husseini Ali Badr	
Prof. of Analytical Chemistry,	
Faculty of Science, Ain Shams University	
Dr. Abd-Elnaby Mohamed Salam	
Lecturer of inorganic chemistry,	

Head of Chemistry Department
Prof. Dr. Ayman Ayoub Abdel-Shafi

ACKNOWLEDMENT

First of all, I would like to express my sincere and profound gratitude to **Allah** for helping me to accomplish this work.

I would like to express my deep thanks to **Prof. Dr. Ibrahim Husseini Ali Badr**, professor of Analytical Chemistry, Faculty of Science, Ain shams University, for supervising this work, his stimulating criticisms and help in the preparation of the manuscript and his continuous encouragement.

My deep thanks and appreciation to **Dr. Abd El-Nabi Mohamed Salem**, lecturer of Inorganic Chemistry, Faculty of Science.

Finally, I would like to express my thanks to my parents for their support and continuous encouragement to me.

Osama Ali Saad

Table of content:

Chapter 1	1
General introduction	1
1.1 Sensors	1
1.2. Ion selective electrodes	2
1.2.1. General introduction	2
1.2.2. Principle of ion-selective electrodes	3
1.3. Classification of ion selective membrane electrodes	5
1.3.1 Solid membranes electrodes	5
1.3.1.2 Homogenous or solid-state-membrane electrodes	6
1.3.1.3. Heterogeneous solid-state-membrane electrodes	6
1.3.3. Liquid/polymeric ion-selective membrane electrodes	7
1.4.1. Anion-exchangers	8
1.4.2 Electrically charged anion-carriers	10
1.4.3 Electrically neutral anion-carriers	10
1.5. ISE membrane components	11
1.5.1. Polymeric matrix	11
1.5.2. Ionophore (recognition element)	12
1.5.3. Solvent (plasticizer)	12
1.5.4. Lipophilic ionic sites	13
1.5.4.1. Electrically charged carriers.	14
1.5.4.2. Electrically neutral carriers	15
1.6. Characterization of ion-selective electrodes	16
1.6.1. Selectivity	16
1.6.2. Detection limit	18
1.6.2.1. Lower detection limit	18
1.6.2.2. Upper detection limit	18
1.7. Optical sensors	19

1.7.1. General introduction	19
1.7.2. Principles of Optical Sensors (Simon's Optodes)	21
1.8. Refence electrode with porous frit	24
1.9. Glass-ceramics	26
1.9.1. General introduction	26
1.9.2 Borosilicate glass waste	27
1.9.3. Kaolin	27
1.9.4. Sintering	28
Chapter 2	36
2.1. Introduction	36
2.2. Experimental	40
2.2.1 Material and reagent	40
2.2.2 Preparation of glass ceramic frits	41
2.2.3 Preparation of reference electrode	43
2.2.4 Instruments	43
2.2.5 Impedance measurement	43
2.3. Results and discussion	44
2.3.1 Characterization of mesoporous glass ceramics	44
2.3.1.1 Water absorption	44
2.3.1.2 SEM micrographs and pore size distributions	44
2.3.1.3 XRD Analysis:	48
2.3.1.4 Thermal expansion study	49
2.3.1.5 Chemical durability	51
2.3.2 Characterization of mesoporous glass ceramics as	51
reference electrode frits	
2.3.2.1 Impedance measurement	52
2.3.2.2 Effect of solution pH and the effect of some	53
representative electrolytes	
2.3.2.3 Flow rate	57
2.3.2.4 Potential drift	57
2.4 Conclusion	61
Chapter 3	67

3.1. Introduction	67
3.2.1. Reagents and Chemicals	70
3.2.3. Preparation of Optical Films	70
3.3. Results and Discussion:	71
3.3.1. Potentiometric Response Characteristics of	71
Membrane Electrodes Formulated with Ge(IV)-OEP	
3.2.2. Fluoride Optical Sensitive Films Based on Ge(IV)-OEP	
3.3. Conclusion	91

Table of Figures:

	_
Fig.1.1. Schematic representation of basic units of chemical sensor.	2
Fig.1.2. Different kinds of electroactive species that can be doped in a	9
conventional polymer membrane anion sensor.	
Fig.1.3. Structure of poly (vinyl chloride) (PVC), Tecoflexpolyurethane	13
(PU), dioctyl sebacate (DOS), o-nitrophenyl octyl ether (o-NPOE), and	
o-nitrophenyl phenyl ether (o-NPPE).	
Fig.1.4. Chemical structure of tridodecylmethyl ammonium (TDMA),	15
tetrakis[p-chlorophenylborate] (TCIPB), and tetrakis [3,5	
bis(trifluoromethylphenyleborate) (TFPB).	
Fig.1.5. Schematic representation of charged and neutral carrier	16
mechanisms with ionic additives in the membrane phase.	
Fig.1.6. Definition of the upper and lower detection limits of an ion-	19
selective electrode.	
Fig.1.7. The general chemical structures of commonly used pH	22
indicators commonly used in bulk-optode membranes: (a) fluorescein	
derivatives as acidic dyes, and (b) Nile blue derivatives as basic	
indicators.	
Fig.1.8. Bulk-opcode anion-selective sensing schemes.	23
Fig.1.9. Illustration of screening effect in nonoporous material.	26
Fig.1.10. Chemical composition of a typical kaolin (A) and borosilicate	28
glass (B).	
8,000 (2).	
Fig.2.1. Schematic diagram for the preparation of borosilicate glass-	42
ceramic.	72
Fig.2.2. SEM micrographs of glass-ceramic composite prepared at	46
different sintering temperatures (GC from A to D)	70
Fig. 2.3. Pore size distribution of mesoporous glass ceramic plugs (A,	47
B, C) based on BJH analysis of nitrogen sorption isotherms (plugs	47
from A to C)	
,	49
Fig.2.4. XRD patterns of glass-ceramic sintered at different	49
temperatures.	
Fig.2.5. Thermal expansion (blue line) and thermal expansion	50
coefficient (red line) of mesoporous glass ceramic plugs	
Fig.2.6. Dependence of the potential of reference electrodes	55
constructed using mesoporous glass ceramic plugs on pH of sample	

556 558
58
58
71
71
71
71
72
73
74
75
75
75 76
7

the polymeric film III in dry form and in pH 3 glycine/ phosphate	
buffer.	
Fig.3.7. Optical spectra of the film 2 as a function of fluoride ion	79
concentrations in glycine/phosphate buffe/pH 3.0	
Fig.3.8. Degree of monomer formation of the film 3 when exposed to	81
increasing concentration of fluoride ion at 400 nm, in glycine-	
phosphate buffer, pH3	
Fig.3.9. Spectra of the polymer film containing 1 wt % Ge(IV)[OEP]	82
and 100 mol % NaTFPB as a function of fluoride ion concentrations	
Fig.3.10. Optical response time of film (II), measured in pH 3.00	83
buffered solution, with increasing concentrations of fluoride from	
fluoride-free buffered solution to 6.6x10 ⁻⁶ M	
Fig.3.11. Degree of monomer formation of the film 3 when exposed to	84
increasing concentration of fluoride (■), (▼) chloride, (▲) nitrate,	
(♦) perchlorate, (•) thiocyanate, at 400 nm, in glycine/phosphate	
buffer/pH3.	
Fig.3.12. Spectra of the polymer film containing 1 wt % Ge(IV)[OEP]	85
and 100 mol % NaTFPB as a function of fluoride ion concentrations	
Fig.3.13. Optical response time of film (II), measured in pH 3.00	86
buffered solution, with increasing concentrations of fluoride from	
fluoride-free buffered solution to 6.6x10 ⁻⁶ M	
Fig.3.14. Optical spectra of the film 2 as a function of chloride (A),	87
nitrate (B), Thiocyanate (C) and perchlorate (D) in glycine/phosphate	
buffer/pH 3.0	
	l

List of Tables:

Table 2.1 XRF analysis of BsGC composites prepared at different	
temperatures, Kaolin, and borosilicate glass.	
Table 2.2 Sintering temperatures for glass-ceramic composite	42
prepared using a fine powder (230 nm) of mixed Pyrex	
glass and Kaolin. The sintering temperature is 60	
minutes.	
Table 2.3 Properties of different porous frits prepared at	59
different sintering temperatures.	
Table 2.4 Comparison of the performance characteristics of the	60
mesoporous glass ceramic frit-based reference	
electrode with reference electrodes based on glass	
and polymeric frit	
Table 3.1 Summary of potentiometric slopes and detection limits	88
of polymer membrane electrodes with deferent	
composition	
Table 3.2 Potentiometric selectivity coefficients for some	89
selected Ge(IV)-OEP	
Table 3.3 Fluoride analysis in oral hygiene products	89
Table 3.4. Potentiometric selectivity coefficients of membrane III	90
compared to the potentiometric selectivity	
coefficients of different metal-porphyrin ion selective	
electrodes.	
Table 3.5. Optical selectivity coefficients of membrane iii,	91
compared to the optical selectivity coefficients of	
Sc(IV)[OEP] and Al(III)[OEP] based optical sensors.	

Summary

Chapter one: This chapter includes a general introduction on potentiometry, the basic principles, theory, historical background, characteristics and classification of potentiometric as well as optical sensor. This chapter gives brief introduction about glass-ceramic and fabrication of reference electrodes, as well.

Chapter two: This chapter covers recycling of laboratory glass ware (Pyrex) through the preparation of a low thermal expansion and chemically durable borosilicate glass-ceramic (BsGC) using Kaolin and Pyrex. As well as preparation of nano-porous ceramic to avoid errors originated from screening effect of porous glass frit. Low thermal expansion and high chemical durability ceramics are advantageous in many applications such as lab supplies, corning ware, automobile components, and other low expansion products that are resistant to thermal shock. Kaolin and borosilicate were chosen for the preparation of glass-ceramic, because they have low thermal expansion and good chemical durability. BsGC was prepared by sintering borosilicate glass waste (e.g., Pyrex laboratory glassware, household glass) and kaolin at different temperatures (750-900 °C). Water absorption method was used to measure the apparent porosity of the prepared composites. Surface morphology of the prepared BCGs was investigated using scanning electron microscopy (SEM). Phase composition of the prepared BGC samples was characterized sing X-ray diffraction technique (XRD). The XRD results showed that at sintering of 750 °C a monocrystalline quartz was only existing. By increasing sintering temperature up to 800°C the quartz phase decreased, while at 850 °C the quartz phase completely disappeared. The sintered BCG composites obtained exhibited low coefficients of thermal expansion in the range of 48 x 10⁻⁷ °C⁻¹ and exhibited high chemical durability. Reference electrodes constructed with the developed nano-porous ceramic frits exhibited excellent performance characteristics in terms of flow rate (0.41 - 0.002 µL/h), potential drift (0.02 mV/hour), pH range (2-12), and impedance (680 Ω). Reference electrodes prepared with nano-porous ceramic materials exhibited low potential drift, wide pH range, absence of screening effect. Moreover, decreasing the pore size of the ceramic frits from the micro