

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليه العلوم - قسم الكيمياء

Studies on the nano spinel addition effect on zirconia properties

Thesis Submitted by: Mahmoud Abdelgawad Abdelsattar Hussein

(M.Sc. Applied Chemistry 2015)

For the requirement of Ph.D. of Science in Chemistry Under the supervision of

Prof. Dr. Safaa Mohamed Awwad El-Gamal

Professor of physical chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Emad Mohamed Mohamed Ewais

President of Central Metallurgical Research and Development Institute (CMRDI)

to

Department of Chemistry
Faculty of Science - Ain Shams University

(2021)

كليه العلوم - قسم الكيمياء

Approval Sheet

Name of candidate: Mahmoud Abdelgawad Abdelsattar Hussein

Degree: Ph.D. Chemistry

Thesis title: Studies on the nano spinel addition effect on zirconia properties

Thesis supervisors	Thesis approved
1- Prof. Dr. Safaa Mohamed A	wwad El-Gamal
Professor of physical chemistry, Fa	culty of Science, Ain Shams University
2- Prof. Dr. Emad Mohamed M	Iohamed Ewais
President of Central Metallurg	gical Research and Development
Institute	(CMRDI)

Approval

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-shafi

كليه العلوم - قسم الكيمياء

Acknowledgement

First and foremost, I would like to thank **Allah** for giving me the opportunity and the strength to accomplish this work. I would like to express my deep gratitude to my supervisors **Prof. Dr. Safaa Mohamed Awwad Elgamal** Prof. of

Prof. Dr. Safaa Mohamed Awwad Elgamal Prof. of Physical Chemistry, Faculty of Science, Ain Shams University and Prof. Dr. Emad Mohamed Mohamed Ewais president of Central Metallurgical Research and Development Institute (CMRDI). They are always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest and guidance and valuable criticism. Also, I am deeply indebted to Prof. Dr. Shufeng Li, Head of Xi'an Key laboratory of Advanced Powder Metallurgy Technology and New materials, School of Materials Science and Engineering, Xi'an University of Technology, for his valuable assistance, guidance and continuous help during the progress of the work. I am deeply indebted to, Dr. Ahmed Mohamed Elamir, Researcher in refractory and ceramic materials department, CMRDI, for his kindlyhelp.

LIST OF CONTENTS

Contents	Page/s
Abbreviations	
Abstract	
A. List of Figures	
B. List of Tables	
Chapter 1: Introduction & Object of Investigation	1-37
IA. Introduction	1
IA.1. Transformation Toughening and Aging of Zirconia	7
IA.2. Types and Applications of Zirconia-Based Ceramics	11
IA.2.1. Tetragonal zirconia poly crystals (TZP)	12
IA.2.2.Magnesium partially stabilized zirconia (Mg-PSZ)	16
IA.2.3. Zirconia toughened alumina (ZTA)	17
IA.3. Magnesium Aluminate Spinel	19
IA.3.1. Spinel background	19
IA.3.2. Synthesis of MA spinel	21
IA.4. Solid Oxide Fuel Cells (SOFCs)	24
IA.5. Spark Plasma Sintering (SPS)	33
IB. Object of Investigation	35
Chapter II: Materials and Experimental Techniques	38-58
IIA. Starting Materials	38
IIA.1. Powder Synthesis	38
IIA.2. Powder Processing	39
IIA.3. Powder Characterization	44
IIB. Composites Consolidation and Characterization	52
IIB.1. Composites Consolidation	52
IIB.2. Composites Characterization	54
IIB.2.1. Density measurement	54
IIB.2.2. Phase composition	55
IIB.2.3. Microstructure analysis	56
IIB.2.4. Low temperature degradation (LTD)	56
IIB.2.5. Hardness and fracture toughness	57
measurements	

IIB.2.6. Compressive strength	
Chapter III: Results and Discussion	59-99
III.1. Phase Evolution	60
III.2. Density and Apparent Porosity	65
III.3. Densification Properties	74
III.4. Composites Microstructure	77
III.5. Mechanical Properties	86
III.5.1.Hardness and Fracture Toughness	86
III.5.2. Cold Crushing Strength	93
III.6. Low Temperature Degradation Resistance	95
Chapter IV: Summary and Conclusion	
References	
Arabic Summary	1-8

Symbol	Description
AR	Alumina rich spinel
ASTM	American standard testing material
ATZ	Alumina toughened zirconia
c-ZrO ₂	Cubic zirconia
EBSD	Electron back-scattered diffraction
EDS	Energy dispersive spectroscopy
FESEM	Field emission scanning electron microscope
HV	Vickers hardness
LTD	Low temperature degradation
MA	Magnesium aluminate spinel
MR	Magnesium rich spinel
m-ZrO ₂	Monoclinic zirconia
PSD	Particle size distribution
PSZ	Partially stabilized zirconia
SA6	Strontium hexa-aluminate
SOFC	Solid oxide fuel cell
SPS	Spark plasma sintering
TZP	Tetragonal zirconia polycrystals
t-ZrO ₂	Tetragonal zirconia
XRD	X-ray diffraction
XRF	X-ray fluorescence
YSZ	Yttria stabilized zirconia
ZAR	Zirconia stabilized with alumina rich spinel
ZMA	Zirconia stabilized with spinel
ZMR	Zirconia stabilized with magnesia rich spinel
ZTA	Zirconia toughened alumina
ZTC	Zirconia toughened composites

Abstract

This study aimed to illustrate the effect of magnesium aluminate spinel (MA) addition on sintering, densification, stabilization behavior and mechanical properties of commercial monoclinic zirconia. Three different MA powders were prepared from magnesium and aluminum waste with MgO: Al₂O₃ molar ratios of 1:1, 2:1 and 1:2. Spinel (MA), magnesia rich spinel MgO.MgAl₂O₄ (MR) and alumina rich spinel Al₂O₃. MgAl₂O₄ (AR) powders were synthesized via co-precipitation method. Six different sets were prepared by mixing MA, MR and AR powders with different proportions of commercial m-ZrO₂ and Y₂O₃ where, the MA, MR and AR content ranged from 0 to 50 wt., % with the increment of 10 wt., %. The obtained powders were sintered using spark plasma sintering technique at different temperatures with a heating rate of 100 °C /min, applied pressure of 40 Mpa and holding time of 30 min under vacuum. Regarding the stoichiometric composition, three different batch compositions have been prepared named as: (1) Zirconia-magnesia alumina spinel composites (ZMA), (2) Zirconiamagnesia rich spinel composites (ZMR) and (3) Zirconia-alumina rich spinel composites (ZAR). Full characterization of all zirconiaspinel composites in terms of phase transformation; microstructure, mechanical properties (e.g., hardness, compressive strength, and toughness) and aging phenomenon was performed. The results showed stoichiometric that. composition and sintering

temperature/time have a considerable effect on the microstructure of the prepared ceramic composites. ZMR composites showed moderate strength with improved sintering properties at relatively lower temperature. ZAR composites showed moderate strength, but with low sintering and densification properties. While, ZMA composites showed improved strength with moderate sintering and densification properties. All the investigated composites, except zirconia free spinel composite, showed high resistance to low temperature degradation, aging, in the moisture atmosphere, demonstrating its validity to be potentially applied for various medical and engineering applications.

Keywords

Magnesium aluminate spinel, Zirconia, Spark plasma sintering, Stabilization, Low temperature degradation, XRD, FESEM

A. LIST OF FIGURES

Figure number	Figure caption	Page number
1	The polymorphs of zirconia	4
2	Phase diagram for zirconia yttria system	6
3	Schematic representation to illustrate how the t-m transformation of ZrO ₂ increases fracture toughness	8
4	Presentation of magnesium aluminate spinel unit cell structure	21
5	a- Fluorite structure of zirconia and b- Oxide ion conduction by hopping mechanism under the influence of electric field	27
6	Operating principle of solid oxide fuel cell	29
7	Basic configuration of a typical SPS system	34
8	XRD patterns of zirconia powder	41
9	XRD patterns of yttria powder	42
10	FESEM image of zirconia powder	42
11	Flow chart represents the spinel powders synthesis process	43
12	XRD patterns of MR, MA and AR prepared powders	45
13	PSD of raw powders before milling	47
14	PSD of ZMA30-50 composites after milling for 3 hr	47
15	Surface area values of the milled powders	48
16	FESEM images of some selected milled powders	49-52
17	Photographs represent SPS procedure	53
18	Sample images of ZMR, ZMA and ZAR sintered composites	54
19	XRD patterns of (a) m-ZrO ₂ raw powder (b) Z0 sintered at1300 °C, (c) Z0 sintered at 1400 °C and (d) Z0 sintered at 1500 °C	61
20	XRD patterns of ZMR50 composite sintered at 1300 °C for 15 min (a), 30 min (b) and at	62

A. LIST OF FIGURES

XRD patterns of ZMR composites sintered at 1400 °C for 0.5 h XRD patterns of ZMA composites sintered at 1400 °C for 0.5 h XRD patterns of ZAR composites sintered at 1500 °C for 0.5 h Porosity values of ZO, ZMR and ZMA composites sintered at 1500 °C for 0.5h Porosity values of ZO, ZMR and ZMA composites sintered at 1200, 1300 and 1400 °C Porosity and bulk density values of ZMR composites sintered at 1400 °C Porosity and bulk density values of ZMA composites sintered at 1400 °C Porosity and bulk density values of ZAR composites sintered at 1500 °C Porosity and bulk density values of ZAR composites sintered at 1500 °C SPS displacement curve of ZMR composites sintered at 1400 °C SPS displacement curve of ZMA10-50 composites sintered at 1400 °C SPS displacement curve of ZAR10-50 composites sintered at 1500 °C FESEM image of Z0 composite sintered at 1400 °C FESEM image of Z0 composite sintered at 1400 °C FESEM image of Z0 composite sintered at 1400 °C SPS displacement curve of ZAR10-50 composites sintered at 1400 °C TESEM image of Z0 composite sintered at 1400 °C SPS ESEM image of ZMR50 composite SPS ESEM image of ZMR50 composite		1400 °C for 15 min (c), 30 min (d)	
22 1400 °C for 0.5 h 23 XRD patterns of ZAR composites sintered at 1500 °C for 0.5h Porosity values of Z0, ZMR and ZMA 24 composites sintered at 1200, 1300 and 1400 °C 25 Porosity and bulk density values of ZMR composites sintered at 1400 °C 26 Porosity and bulk density values of ZMA composites sintered at 1400 °C 27 Porosity and bulk density values of ZAR composites sintered at 1500 °C 28 SPS displacement curve of ZMR composites sintered at 1400 °C 29 SPS displacement curve of ZMA10-50 composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZMR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composite(using 10 kg). (Some cracks were	21		64
1500 °C for 0.5h Porosity values of Z0, ZMR and ZMA composites sintered at 1200, 1300 and 1400 °C 25 Porosity and bulk density values of ZMR composites sintered at 1400 °C 26 Porosity and bulk density values of ZMA composites sintered at 1400 °C 27 Porosity and bulk density values of ZAR composites sintered at 1500 °C 28 SPS displacement curve of ZMR composites sintered at 1400 °C 29 SPS displacement curve of ZMR10-50 composites sintered at 1500 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZMR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 composite(using 10 kg). (Some cracks were	22		64
24 composites sintered at 1200, 1300 and 1400 °C 25 Porosity and bulk density values of ZMR composites sintered at 1400 °C 26 Porosity and bulk density values of ZMA composites sintered at 1400 °C 27 Porosity and bulk density values of ZAR composites sintered at 1500 °C 28 SPS displacement curve of ZMR composites sintered at 1400 °C 29 SPS displacement curve of ZMA10-50 composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZMR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composite(using 10 kg). (Some cracks were)	23	1	65
composites sintered at 1400 °C 26 Porosity and bulk density values of ZMA composites sintered at 1400 °C 27 Porosity and bulk density values of ZAR composites sintered at 1500 °C 28 SPS displacement curve of ZMR composites sintered at 1400 °C 29 SPS displacement curve of ZMA10-50 composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZMR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composite(using 10 kg). (Some cracks were	24	composites sintered at 1200, 1300 and 1400	68
composites sintered at 1400 °C Porosity and bulk density values of ZAR composites sintered at 1500 °C SPS displacement curve of ZMR composites sintered at 1400 °C SPS displacement curve of ZMA10-50 composites sintered at 1400 °C SPS displacement curve of ZAR10-50 composites sintered at 1500 °C SPS displacement curve of ZAR10-50 romposites sintered at 1500 °C TESEM image of Z0 composite sintered at 1400 °C SESEM images of different sintered composites Mapping images of ZMR50 composite Mapping images of ZMR50 composite Mapping images of ZMR50 composite SESEM image of ZMR50 composite SESEM images of the indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 composite(using 10 kg). (Some cracks were	25		70
28 SPS displacement curve of ZMR composites sintered at 1400 °C 29 SPS displacement curve of ZMA10-50 composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZMR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composite(using 10 kg). (Some cracks were	26		71
sintered at 1400 °C 29 SPS displacement curve of ZMA10-50 composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZAR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composite(using 10 kg). (Some cracks were	27	5	72
composites sintered at 1400 °C 30 SPS displacement curve of ZAR10-50 composites sintered at 1500 °C 31 FESEM image of Z0 composite sintered at 1400 °C 32 FESEM images of different sintered composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZAR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	28	1	75
composites sintered at 1500 °C FESEM image of Z0 composite sintered at 1400 °C FESEM images of different sintered composites Mapping images of ZMR50 composite Mapping images of ZAR50 composite Mapping images of ZMR50 composite FESEM image of ZMR50 composite FESEM image of ZMR50 composite EDS analysis of ZMR50 composite FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composites using 1 kg and (e) ZMR50 88 composite using 10 kg). (Some cracks were	29	*	75
FESEM image of Z0 composite sintered at 1400 °C FESEM images of different sintered composites Mapping images of ZMR50 composite Mapping images of ZAR50 composite Mapping images of ZMR50 composite FESEM image of ZMR50 composite EDS analysis of ZMR50 composite EDS analysis of ZMR50 composite FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	30	SPS displacement curve of ZAR10-50	76
composites 33 Mapping images of ZMR50 composite 34 Mapping images of ZAR50 composite 35 FESEM image of ZMR50 composite 36 EDS analysis of ZMR50 composite 37 FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	31	FESEM image of Z0 composite sintered at	78
34 Mapping images of ZAR50 composite 81 35 FESEM image of ZMR50 composite 82 36 EDS analysis of ZMR50 composite 83 37 FESEM for hardness indentation by 1 kg 87 Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	32		79
34 Mapping images of ZAR50 composite 81 35 FESEM image of ZMR50 composite 82 36 EDS analysis of ZMR50 composite 83 37 FESEM for hardness indentation by 1 kg 87 Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	33	Mapping images of ZMR50 composite	80
36 EDS analysis of ZMR50 composite 83 37 FESEM for hardness indentation by 1 kg 87 Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 88 composite(using 10 kg). (Some cracks were	34		81
FESEM for hardness indentation by 1 kg Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 composite(using 10 kg). (Some cracks were	35	FESEM image of ZMR50 composite	82
Optical images of the indentation process of: (a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 composite(using 10 kg). (Some cracks were	36	EDS analysis of ZMR50 composite	83
(a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50 composite(using 10 kg). (Some cracks were	37	FESEM for hardness indentation by 1 kg	87
t ennanced by while color)	38	(a) Z0 ,(b) ZMR30 , (c&d) ZMR50 composites using 1 kg and (e) ZMR50	88

39	Hardness and fracture toughness of ZMR composites sintered at 1400 °C	90
40	Hardness and fracture toughness of ZMA composites sintered at 1400 °C	91
41	Hardness and fracture toughness of ZAR composites sintered at 1500 °C	92
42	Compressive strength values of ZMR, ZMA (sintered at 1400 °C) and ZAR composite (sintered at 1500 °C)	95
43	XRD patterns of ZMR10-50 composites before the aging test	98
44	XRD patterns of ZMR10-50 composites after the aging test	98
45	XRD patterns of Z0 composites before (B) and after (A) the aging test	99