

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Expression of NKG2A Inhibitory Receptor on Cytotoxic Lymphocytes as an Indicator of Severity in Corona Virus Disease 2019 (COVID-19) Patients

Thesis

Submitted for Partial Fulfillment of master's degree in **Basic Medical Sciences (Medical Microbiology and Immunology)**

Presented by

Marwa Mustafa Mounir Yasin

 $M \cdot B \cdot B \cdot CH$,

Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Fman Hussein Shehata

Professor of Medical Microbiology and Immunology
Faculty of Medicine, Ain Shams University

Dr. Marwa Shabban Elsayed Ibrahim

Assistant Professor of Medical Microbiology and Immunology
Faculty of Medicine, Ain Shams University

Dr. Nesma Gamal Ahmed Elsheikh

Lecturer of Geriatric and Gerontology medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine

سورة البقرة الآية: ٣٢

Acknowledgment

First thanks to **ALLAH** to whom I relate every single successful step toward achieving any work in my life.

I wish to express my deepest gratitude and appreciation to Prof. Dr. Eman Hussein Shehata, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her expert, sincere and valuable guidance throughout the work.

I also want to express my great thanks to Dr. Marwa Shabban Elsayed Ibrahim, Assistant Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, sincere efforts and fruitful encouragement.

Also, I want to express my great thanks to Dr. Nesma Gamal Ahmed Elsayed, Lecturer of geriatric medicine, Faculty of Medicine, Ain Shams University for her help and encouragement.

Also, I want to express my greatest thanks and best regards to my colleagues in the department of Microbiology and Immunology, for their cooperation and advice.

Lastly, I wish to express my appreciation to my family, without their support and help this work would have not been fulfilled.

Marwa Mustafa Mounir

List of Contents

Title P	age No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Corona- Virus Disease 2019 (COVID-19)	5
Immunologic Features in Coronavirus Disease 20	1934
Natural Killer Group 2 Member A Receptor	51
Patients and Methods	62
Results	71
Discussion	82
Summary	88
Conclusions and Recommendations	91
References	93
Arabic Summary	١

List of Tables

Table No.	Title	Page No.
Table (1):	The demographic and personal data Three studied groups	
Table (2):	Laboratory parameters measured i and control groups	
Table (3):	NK cell count and markers me between control and case groups	
Table (4):	CD8 +T Cell count and markers me between control and case groups	
Table (5):	Lab Parameters measured within groups	
Table (6):	NK cell count and markers me between moderate and severe cases.	
Table (7):	CD8 +T Cell count and markers me between moderate and severe cases.	
Table (8):	Correlations between NKG2A Express on CD8-Cell% and NKG2A Express NK-Cell% among all participants	sion on

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of coronavirus	8
Figure (2):	Genome and nonstructural pro Severe Acute Respiratory S Coronavirus-2	teins of Syndrome
Figure (3):	Mechanism of entry and life cycle of Acute Respiratory Syndrome Coron	
Figure (4):	Potential roles of NK cells and based interventions in COVID-19	
Figure (5):	Potential model of T cell response COVID-19 progression	_
Figure (6):	Antibody-Mediated Immunity CoV-2	inSARS-
Figure (7):	NKG2AChromosomal location	52
Figure (8):	Receptor interaction of HLA- NKG2A&B/CD94 and NKG2C/CD9	
Figure (9):	NK cell surface receptors, both a and inhibitory receptors, carry our functions through a balance of sign	t NK cell
Figure (10):	Structure and ligands of activation inhibitory receptors of NK cells	0
Figure (11):	NK Cell Inhibitory Receptors Spathway	
Figure (12):	Comparison of NKG2A expression cells between cases and control gro	
Figure (13):	Comparison of NKG2A expression T cells between cases and control g	
Figure (14):	Comparison of NKG2A expression cells between moderate and sever of cases.	e groups

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (15):	Comparison of NKG2A expression T cells between moderate and groups of cases	d severe
Figure (16):	Scatter diagram showing the constitution between NKG2A Expression on Cand NKG2A Expression on NK-Ce.	orrelation D8-Cell%

List of Abbreviations

Abb.	Full term
2019-nCoV	2019-novel coronavirus
ALI	Acute lung injury
ARDS	Acute respiratory distress syndrome
ALT	Alanine aminotransferase
ACE2	Angiotensin converting enzyme 2
AT1R	Angiotensin receptor 1
ACEIs	Angiotensinconverting enzyme inhibitors
SHP-1	Anti-Src Homology Phosphatase-1
SHP-2	Anti-Src Homology Phosphatase-2
AST	Aspartate aminotransferase
BAL	Bronchoalveolar lavage
BALF	Bronchoalveolar Lavage Fluid
CHB	$\it Chronic\ hepatitis\ B$
CT	Computed tomography
COVID-19	Coronavirus disease 2019
CSS	Cytokine storm syndrome
CCR2	C-C Chemokine receptor type 2
CCL27	C-C Motif Chemokine Ligand 27
CXCL8	C-X-C Motif Chemokine Ligand 8
DCs	Dendritic cells
DMARD	Disease-modifying anti-rheumatic drug
R	Effective reproductive number
ERGIC	Endoplasmic reticulum-Golgi intermediate compartment
eIF2a	Eukaryotic initiation factor 2 subunit α

List of Abbreviations (Cont...)

Abb.	Full term
ECMO	Extracorporeal membrane oxygenation
favipiravir-RTP	Favipiravir ribofuranosyl-5B-triphosphate
FGF	Fibroblast growth factor
FiO2	Fraction of inspired oxygen
$G ext{-}CSF$	Granulocyte colony-stimulating factor
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HCWs	Health care workers
HGB	Hemoglobin level
HCV	Hepatitis C virus
CHB-H	High HBV DNA titer
HCoV	Human coronaviruses
HCQS	Hydroxycholoroquine
ITIM	Immunoreceptor tyrosine-based inhibitory motif
<i>IP-10</i>	Interferon y-induced protein 10
ISGs	Interferon stimulated genes
$IFN\gamma$	Interferon γ
<i>IL-1B</i>	Interleukin 1beta
IL-15	Interleukin-15
KLRD1	Killer Cell Lectin Like Receptor D1
KIRs	Killer immunoglobulin Ig-like receptors
KIRs	Killer immunoglobulin receptors
LIR-1	Leukocyte Ig-like receptor-1
CHB-L	Low HBV DNA titer
M-CSF	Macrophage Colony Stimulating Factor

List of Abbreviations (Cont...)

Abb.	Full term
MIP-1A	Macrophage Inflammatory Protein-1 Alpha
MHC-I	Major histocompatibility complex I
MBL	Mannose-binding lectin
M	Matrix protein
MASP-2	MBL-associated serine protease 2
MAP	Mean arterial pressure
MFI	Mean intensity of fluorescence
MAC	Membrane attack complex
MERS	Middle East Respiratory Syndrome
mAbs	Monoclonal antibodies
MCP-1	Monocyte Chemoattractant Protein-1
MCP-3	Monocyte Chemotactic Protein 3
NK	Natural killer
nAbs	Neutralizing IgG anti-bodies
N/L Ratio	Neutrophil to Lymphocyte Ratio
NKC	NK gene complex
NLRs	NOD-like receptors
NCIP	Novel coronavirus-infected pneumonia
NAAT	Nucleic acid amplification Test
N	Nucleoprotein
NOD	Nucleotide-binding and oligomerization domain
OAS	Oligoadenylate synthase
PAMPs	Pathogen-associated molecular patterns
PRRs	Pattern recognition receptors
PBMCs	Peripheral blood mononuclear cells

List of Abbreviations (Cont...)

Full term
Personal Protective Equipment
Platelet count
Platelet-derived growth factor
Positive end-expiratory pressure,
Programmed cell death protein-1
Protein kinase R
Real-time reverse transcription polymerase chain reaction
Receptor binding domain
Retinoic acid-inducible gene I
RNA dependent RNA polymerase
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus-2
Spike structural protein
Src Homology 2
T cell immunoreceptor with immunoglobulin and ITIM domains
The basic reproduction
Toll-like receptors
Total leucocytic count
Transmembrane serine protease 2
Tumor necrosis factor alpha
Type I interferons
Type II transmembrane serine protease
Vascular endothelial growth factor
Viral envelope
World Health Organization

Introduction

Voronavirus disease 2019 (COVID-19) is an emerging viral Infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel beta coronavirus firstly identified during a burst of respiratory illness cases in Wuhan City, Hubei Province, China (Li et al., 2020). In a few weeks the disease became a global pandemic with 5, 593, 631 cases and 353, 334 confirmed deaths as reported by the World Health Organization on 28 May 2020. A wealth of recent data dysregulated immune response highlights the and inflammatory component as the main cause of morbidity and mortality (Blanco-Melo et al., 2020).

This novel virus is associated with higher mortality than other respiratory viruses, it also demonstrates a broader variation in its clinical presentation (Xu et al., 2020). The majority of COVID-19 cases (about 80%) are asymptomatic or exhibit mild to moderate symptoms, but approximately 15% progress to severe pneumonia and about 5% develop critical disease with respiratory failure and organ dysfunction (Huang et al., 2020). Pneumonia is the most frequent serious manifestation of infection, while acute respiratory distress syndrome (ARDS) is the major complication in patients with severe illness. Other complications include: coagulopathy, microvascular thrombosis such as myocardial infarction and stroke, arrhythmias, acute cardiac injury, liver injury, acute kidney injury, and shock (Arentz et al., 2020).