

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Relation between Serum and Dietary Zinc Levels and Irritable Bowel Syndrome (IBS) in Medical Students of Ain Shams University.

Thesis

Submitted for the partial fulfillment of Master degree
In Clinical Nutrition

Dr. Hala EL-Sayed Abd EL-Hafiz Shams EL-Din

(MD)

Lecturer of Medical Parasitology Faculty of Medicine Ain Shams University

Supervised by Prof. Dr. Ghada Essam Aldin Amin

Professor of Public Health and community Medicine Faculty of Medicine Ain Shams University

Prof. Dr. Reem Mohamed Sallam

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine Ain Shams University

Dr. Isis Magdy Mossad Shehata

Lecturer of Public Health and community Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgment

First and foremost, thanks to **Allah**, the most beneficent and the most merciful.

I would like to express my deep gratitude and appreciation to *Prof. Dr. Ghada Essam ALdin Amin, Professor of Public Health*, for her precious supervision, continuous guidance and support.

My special thanks and appreciation to **Prof. Dr. Reem Mohamed Sallam, Professor of Medical Biochemistry and Molecular Biology** for her great help and supervision, generous cooperation and sincere encouragement.

I'm deeply thankful to *Dr. Isis Magdy Mossad*, *Lecturer of Public Health* for her great help, constant guidance and kind supervision.

Also, I would like to thank **Prof. Dr. Reem Elkabarity, Head of Clinical Nutrition Board** for her great support.

Last but not least, I would like to thank my parents, my husband and kids for their continuous encouragement and real help.

Abstract

IBS is one of the most common Functional Gastrointestinal disorder (FGID) and diseases of brain-gut interaction, characterized by recurrent abdominal pain and disordered defecation. Recently, Rome IV criteria was used for diagnosis of IBS. Dietary manipulation was proposed effectively for treatment of IBS symptoms as low FODMOPs diet. But this elimination diet may cause malnutrition and micronutrients deficiency deficiency. Zinc is an essential trace element plays a key role in the development and maintenance of all tissues. Low Zn consumption and deficiency may lead to the damage of intestinal mucosa. The present work aimed to measure the proportion of IBS and its subtypes in medical students participated in NAMES/ASU project and to correlate dietary intake and serum level of Zn with IBS. This cross-sectional study of purposive sample involved 199 medical students (males and females) who had GIT symptoms for at least, the past 6 months. IBS and its subtypes clinical diagnosis were made according to Rome IV criteria, serum zinc was measured by colorimetric method and the dietary consumption of zinc rich food was analyzed and measured using food composition software analysis. The Proportion of IBS in NAMES/ASU students was 8.5% (104 students), with IBS-C was the commonest subtype. The serum zinc level and dietary zinc intake were low in IBS students with statistical significance difference. Serum zinc level and dietary zinc intake showed a positive significant correlation. Food frequency questionnaire (FFQ) analysis showed statistically significant difference regarding consumption of milk and serum zinc level in IBS students. It is important to recommend and encourage young adults and IBS patients to consume the dietary allowance of zinc per day from zinc rich food as meat, milk and fish.

Key words: IBS, Zinc, Food frequency questionnaire (FFO).

List of Content

Title	Page
	No.
List of Abbreviations	1
List of Tables	1
List of Figures	1
Introduction	1
Aim of the	4
work	
Review of Literature	
Irritable Bowel Syndrome	5
IBS and Nutrition	19
Zinc	40
Subjects and Methods	49
Results	58
Discussion	71
Summary	84
Conclusion	87
Recommendations	88
References	89
Arabic Summary	

List of abbreviations

BSFS: Bristol Stool Form Scale.DRI: Dietary Reference Intakes.

FDA: Food and Drug Administration.
 FMT: Fecal microbiota transplantation.

• **FGIDs:** Functional Gastrointestinal disorders.

• **FODMAP:** Fermentable Oligosaccharide, Disaccharide,

Monosaccharide, And polyol.

■ GABA: Gamma-aminobutyric acid

• **GI**: Gastrointestinal

■ **HAPC:** High amplitude propagated colonic

contractions.

■ **IBD:** Inflammatory Bowel Diseases

■ **IBS:** Irritable bowel syndrome

IBS-C: Irritable bowel syndrome-Constipation
 IBS-D: Irritable bowel syndrome-Diarrhea
 IBS-M: Irritable bowel syndrome-Mixed

■ IBS-QOL: Irritable Bowel Syndrome-Quality of Life.
■ IBS-U: Irritable bowel syndrome-unclassified

5 bydrovytryntoming (serotonin)

■ **5-HT:** 5-hydroxytryptamine (serotonin).

■ NAMS/ASU: The Nutritional Assessment of Medical

Students of Ain Shams University.

• **QOL:** Quality of life.

PR: Protease's Receptors.SD: Standard deviation

SSRIs: Selective serotonin reuptake inhibitors
 SIBO: Small intestinal bacterial overgrowth

• **SLC:** Solute-linked carrier families

-List of abbreviations

■ Spp.: Species.

TCAs: Tricyclic antidepressants.TLR-9: Toll -like receptors 9.

TNF α : Tumor necrosis factor alpha.

■ **TNFSF15:** Tumor necrosis factor superfamily member 15.

VOMs: Volatile organic molecules.

WC: Waist circumference.ZFP: Zinc finger proteins.

ZIP: Zrt- and Irt-like protein transporters.

■ **ZnT:** Zinc transporters.

List of Tables

Number	Title	Page
Table (1):	Different Diagnostic criteria for IBS	22
Table (2):	Rome IV Diagnostic criteria for IBS	24
Table (3):	Rome IV Diagnostic criteria for IBS subtypes	28
Table (4):	Proportion of students having IBS	59
Table (5):	Comparison of socio-demographic characteristics between the studied groups	60
Table (6):	Classification of IBS subtypes among IBS students	62
Table (7):	Results of anthropometric measurements among the studied groups	63
Table (8):	Comparison of general clinical symptoms between the studied groups.	64
Table (9):	Comparison of GIT symptoms between the studied groups	65

— List of Tables —

Table (10):	Comparison of serum zinc level between the studied groups	66
Table (11):	Comparison of dietary zinc intake in the studied groups	67
Table (12):	Consumption of zinc containing food groups by IBS students weekly (Number of servings consumed per week)	69
Table (13):	Relation between food consumption and serum zinc level in IBS students (Number of servings consumed per week)	70

List of Figures

Number		Page
Figure (1):	Potential factors and multiple interacting pathways that determine the manifestation of IBS	10
Figure (2):	Colonic mucosal biopsy in IBS patient showing increased mast cells in lamina propria (CD117 immunostaining)	10
Figure (3):	Gut-brain axis	14
Figure (4):	The Bristol Stool Form Scale	27
Figure (5):	Dietary FODMOP	32
Figure (6):	Zinc molecule	41
Figure (7):	Zinc preserves intestinal mucosal barrier functions	47
Figure (8):	IBS subtypes according to BSFS	53
Figure (9):	Humalyzer 3000	56

—List of Figures —

Figure (10):	Bar chart showing distribution of IBS among IBS students as regard academic year	61
Figure (11):	Correlation between dietary zinc intake and serum zinc level in IBS students	68

Introduction

Irritable bowel syndrome (IBS) is a functional digestive disorder. It is a symptom-based condition characterized by abdominal pain or discomfort, with altered bowel habits, in the absence of any other disease to cause these sorts of symptoms, including gastrointestinal malignancies or inflammatory bowel diseases (IBD) (Borghini et al., 2017).

Its estimated prevalence is 10%–20% (Longstreth et al., 2006). Arab countries are among the least studied populations in the world (Lovell and Ford, 2012). An Egyptian study conducted in Suez governorate had revealed high prevalence rate of 34.2% among the studied group (Abdulmajeed et al., 2011). IBS is nearly twice more common in women than men (Chey et al., 2016).

Despite its often chronic and relapsing nature, the underlying pathophysiology of IBS remains incompletely understood (Kim et al., 2017). The etiology is multifactorial, involving dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, immune-activation, visceral hypersensitivity, disordered gut motility and chronic, low-grade, subclinical inflammation (Barbara et al., 2011).

Food intolerance is very common in IBS, as many patients associate the ingestion of a wide range of foods with the development of abdominal bloating and pain (**Bohn** *et al.*, **2013**), and 62% make dietary modifications, such as reduce consumption of dairy products, spicy foods, wheat, alcohol, and some fruits or vegetables rich in poorly absorbable, Fermentable, Oligosaccharides, Disaccharides, Monosaccharides and Polyols (FODMAPs) (**El-Salhy** *et al.*, **2012**).