

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"The Degree of Monomer Conversion and Stainability of Different resinous Luting Agents Used for Ceramic Laminate Veneers"

Thesis

Submitted to Fixed Prosthodontics Department
Faculty of Dentistry - Ain Shams University
for Partial Fulfillment of the Requirements for master's degree in
Fixed Prosthodontics

By

Yasmeen Al Saeed Fahmy Saleh

B.D.S. (Future University in Egypt, 2014)

Faculty of Dentistry
Ain Shams University
2021

SUPERVISORS

Dr. Maged Mohamed Zohdy

Associate Professor of Fixed Prosthodontics,
Faculty of Dentistry
Ain Shams University

Dr. Ghada Abd El-Fattah

Associate professor of Fixed Prosthodontics
Faculty of Dentistry
Ain Shams University

Acknowledgement

First and foremost, thanks to Allah, to whom I relate any success

I would like to express my sincere gratitude to my advisor ,**Dr. Maged Zohdy**, for allowing me the opportunity to work with him and for providing me a challenging environment to foster creative learning. I appreciate all your time, ideas and teaching to make my learning experience stimulating, your guidance, patience, motivation, and immense knowledge helped me all the time. I could not have imagined having a better advisor and mentor for this study.

I owe a great deal of appreciation to **Dr. Ghada Abdulfattah**, for her patient guidance, enthusiastic encouragement and useful critiques of this research work, this thesis would not has been possible without your help, support, and patience.

I am especially grateful for **Dr. Ahmed Abu Elfadl**, for helping me gather data for my thesis , I can't thank you enough for your willingness to support me. I will never forget your warm hospitality and generosity.

Also, I extend my sincerest appreciations to **Dr Ahmed Quidy**, for his time reading and commenting on my thesis

Last but not least, I must express my very profound gratitude to my family, my friends, and colleagues for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Dedication

A special feeling of gratitude to My loving parents, my sisters and brother whom never left my side, with their endless love, effort and continuous support have accompanied me throughout my life, without hesitating at any moment of seeing my dreams come true, all my love and unlimited gratitude.

My cutest nephew Omar, thank you for always distracting me while working, but I still wouldn't trade your smile for the world

I also dedicate this dissertation to my friends who have supported me throughout the process. I will always appreciate all you have done.

LIST OF CONTENTS

	Page
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Laminate Veneer	3
2.2. Ceramics	6
2.2.1. Classifications according to microstructure	7
2.2.2. Glass-ceramics	10
2.2.3. Lithium disilicate glass-ceramics	10
2.2.4. CAD-CAM lithium disilicate glass-ceramics (IPS e.max CAD)	12
2.3. Resinous materials used for laminate veneer cementation .	13
2.3.1. Light – cured resin cement	16
2.3.2. Preheated composite	17
2.3.3. Flowable composites	23
2.4. Colour	25
2.5. Stainability of resinous material	29
2.6. Degree of Conversion	33
STATEMENT OF PROBLEM	39
AIM OF THE STUDY	40
MATERIALS & METHODS	41
5.1. Materials	41
5.1.1. Resinous materials	41

	Page
5.1.2. Ceramic material	43
5.2. Methods	45
5.2.1. Sample grouping	45
5.2.2. Construction of ceramic slices	46
5.2.3. Crystallization	48
5.2.4. Fabrication of Teflon mould	49
5.2.5. Application of the resinous material	50
5.2.6. Evening out the resinous materials	53
5.2.7. Curing of resinous materials	54
5.2.8. Colour measurement	56
5.2.9. Measuring degree of conversion	64
RESULTS	67
6.1. Degree of conversion	68
6.2. Stainability (ΔE)	69
6.2.1. Effect of different variables and their interaction	69
6.2.2. Effect of resinous materials within each staining solutions	69
6.2.3. Effect of staining solution within each resinous materials	71
DISCUSSION	73
SUMMARY	83
CONCLUSION	86
REFERENCES	87
ARABIC SUMMARY	-

LIST OF TABLES

Tableno.	Title	Page
1	Classification of ceramics according to their microstructure	7
2	Resinous materials used in this study	41
3	IPS Emax CAD	43
4	Sample grouping	46
5	Staining solutions used in the study	60
6	Mean ± standard deviation (SD) of degree of conversions for different resinous materials	68
7	Effect of different variables and their interaction on stainability (ΔE)	69
8	Mean \pm standard deviation (SD) of stainability (ΔE) for different resinous materials within each staining solution	70
9	Mean \pm standard deviation (SD) of stainability (ΔE) for different staining solutions within each resinous materials.	72