

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Ain Shams University Faculty of Education Physics Department

Study of Some Factors Affecting the Efficiency of the Flat Plate Solar Collector - (Theoretical Study)

Thesis

Submitted for the Degree of Master of Teacher's Preparation in Science (Theoretical Physics)

By

Ahmed Mohamed Abdelaziz Ali

Supervised by

Prof. Dr. Mohamed Abdel-Hady Kamel El-Adawi

Professor of Theoretical Physics, Faculty of Education, Ain Shams University

Dr. Samia Sayed Mustafa

Teacher of Theoretical Physics, Faculty of Education, Ain Shams University

Ain Shams University Faculty of Education Physics Department

Researcher's Name: Ahmed Mohamed Abdel Aziz Ali

Title of the thesis: Study of Some Factors Affecting the Efficiency of

the Flat Plate Solar Collector - (Theoretical Study)

Submitted to: Physics Department, Faculty of Education, Ain

Shams University

Supervisors:

1. Prof. Dr. Mohamed Abdel-Hady Kamel El-Adawi

Professor of Theoretical Physics, Faculty of Education, Ain Shams University

2. Dr. Samia Sayed Mustafa

Teacher of Theoretical Physics, Faculty of Education, Ain Shams University

Ain Shams University Faculty of Education Physics Department

Approval Sheet

Title: "Study of Some Factors Affecting the Effciency Of the

Flat Plate Solar Collector - (theoretical study)"

Candidate: Ahmed Mohamed Abdelaziz Ali

Degree: Master degree of Teacher Preparation in Science

(Theoretical Physics)

Board of Advisors

Approved by	Signature
Prof. Dr. Mohamed Abdel-Hady Kamel El-Adawi	
Professor of Theoretical Physics,	
Faculty of Education, Ain Shams University	
Dr. Samia Sayed Mustafa	
Teacher of Theoretical Physics,	
Faculty of Education, Ain Shams University	

Cairo, Egypt, Date of presentation:	/	/2021
Stamp:	/	/2021
Date of approval:	/	/2021
Approval of Faculty council:	/	/2021
Approval of University council:	/	/2021

بسم الله الرحمن الرحيم

{{ قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَاكِ إِلَّا مَا عَلَّمْتَنَاكِ إِلَّا مَا عَلَّمْتَنَاكِ إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ}} إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ}}

حدق الله العظيم

سورة البقرة، آية ٣٢.

ACKNOWLEDGMENT

Acknowledgement

I Would Like to Thank **Allah Almighty** for Guidance and Help Covering All My Steps to Fulfill This Thesis.

I Would Like to Thank **Prof. Dr. Mohamed Abd El Hady Kamel El-Adawi,** Professor of Theoretical Physics, Faculty of Education, Ain Shams University, For His Fruitful Supervision, Assistance, Discussion and Sincere Help During This Work.

I Would Like to Thank **Dr. Samia Sayed Mostafa**, Teacher of Theoretical Physics, Faculty of Education, Ain Shams University, For Her Supervision, Support, Fruitful Discussions and Help During This Work.

I Would Like to Thank **Prof. Dr. Safaa Abd El Fattah Shalaby**, Professor of Theoretical Physics, Faculty of Education, Ain Shams University for Her Effort, Interest, And Fruitful Discussions Throughout This Thesis.

I Would Like to Thank **Prof. Dr. Radwan Hamoda**, Professor of Physics, Vice Dean, Faculty of Education, Ain Shams University, For His Continuous Support.

I Would Like to Express My Deep Appreciations to **Prof. Dr. Alaa-Alden Mohamed Farag**, Head of Physics Department, Faculty of Education, Ain Shams University, For His Support and Encouragement

I Would Like to Thank the Whole Staff of The Physics Department, Faculty of Education, Ain Shams University for Their Encouragement.

I Would Like to Thank My Parents and My Family for Their Continuous Help, Support and Encouragement.

I Would Like to Thank My Friends for Their Help.

CONTENTS

Contents

Acknowledgment	i
Contents	ii
List of tables	v
List of figures	vi
Nomenclatures	viii
Greek Symbols	ix
Publications	X
Summary	xi
Abstract	xvi
Chapter 1	
Introduction	1
1.1 Energy problems	1
1.2 Energy sources	2
1.3 Types of energy	2
1.3.1 Non-renewable energy	2
1.3.2 Renewable energy	3
1.4 Solar energy	4
1.5 Solar energy conversions	5
1.5.1 Heliochemical processes	6
1.5.2 Helioelectrical processes	6
1.5.3 Heliothermal processes	6
1.6 Solar thermal energy applications	7
1.7 Molten salt technology	8
1.8 Solar collectors	9
1.8.1 Flat plat collectors	9
1.8.2 Evacuated tube collectors	13
1.8.3 Concentrating collectors	15
1.8.3.1 Compound parabolic collectors	15

1.8.3.2 Parabolic trough collectors	16
1.8.3.3 Linear Fresnel reflectors	
1.8.3.4 Parabolic dish reflectors	17
1.9 Aim of the thesis	18
Chapter 2	
Survey of literatures	19
Chapter 3	
On the solar radiation	26
3.1. The sun	26
3.2. Solar radiation	
3.3. Air mass	
3.4. Solar angles	29
3.5. The solar constant	32
3.5. The daily global solar radiation	
Chapter 4	
Performance and efficiency of a flat plate solar collector with thin	
absorber -theoretical study	35
4.1. Introduction	35
4.2. Determination of the temperature of the absorber	36
4.3. Determination of the working fluid temperature	37
4.4. Determination of the efficiency of the flat plate collector	39
4.5. Computations	40
4.5.1 The temperature $\theta(t)$ of the absorber plate computations	41
4.5.2 The average temperature $\overline{\theta}_w(t)$ of the working fluid computations	
4.5.3 The efficiency (η) computations	47
Chapter 5	
Performance and efficiency of a flat plate solar collector with thick	
absorber -theoretical study	49
5.1. Introduction	49
5.2. Setting up the problem	50
5.3. Solving the heat diffusion equation	
5.4. Determination of the temperature profile through the absorber	
5.5. Determination of $\boldsymbol{\theta}(0, t)$	57

5.6. Determination of $\theta(x, t)$	58
5.7. Determination of the excess temperature at the absorber plate's rear	
surface $\theta(l,t)$	59
5.8. Determination of the working fluid temperature	62
5.9. Determination of the efficiency (η) of the flat plate collector	64
5.10. The Computations	65
5.10.1. The effect of the absorber material	66
5.10.2. The effect of the absorber thickness	7 1
5.10.3. The effect of the heat transfer coefficient for convection	75
5.10.4. The effect of the flow rate of the working fluid	79
Conclusions	83
References	85
Arabic summary	Í

LIST OF TABLES

List of Tables

No.	Table	Page
3-1	Some facts on the sun	27
4-1	The physical parameters of the considered absorber materials.	40
4-2	The variation of the temperature of the absorber $\theta(t)$, K of different	41
	materials subjected to incident solar radiation with the shifted local day time	
	f, hr. [eq. (4-5)] for [h = 3 W/m ² K]	
4-3	The variation of the temperature of the absorber $\theta(t)$, K of different	43
	materials subjected to incident solar radiation with the shifted local day time	
	f(t), hr. [eq. (4-5)] for [h = 10 W/m ² K]	
4-4	The variation of the average temperature of the working fluid $\bar{\theta}_w(t)$, K with	45
	the shifted local day time f , hr. [eq. (4-11)] for $[h = 3 \text{ W/m}^2\text{K}]$	
4-5	The variation of the efficiency of the flat plate collector η, % with the	47
	shifted local day time f , hr. [eq. (4-13)] for $[h = 3 \text{ W/m}^2\text{K}]$	
5-1	The physical parameters of the considered absorber materials	66
5-2	The variation of the average temperature of the working fluid $\theta_w(t)$, K with	67
	the shifted local day time t , hr . at different materials for the absorber plate	
	[eq. (5-46)]	_
5-3	The variation of the efficiency η , % of the flat plate collector with the	69
	shifted local day time t, hr at different materials for the absorber plate [eq.	
- 1	(5-49)]	7.1
5-4	The variation of the average temperature of the working fluid $\theta_w(t)$, K with	71
	the shifted local day time t , hr . at different thicknesses (l) for the absorber	
~ ~	plate [eq. (5-46)]	72
5-5	The variation of the efficiency η , % of the flat-plate collector with the	73
	shifted local day time t, hr at different thicknesses (l) for the absorber	
5 6	plate [eq. $(5-49)$]	75
5-6	The variation of the average temperature of the working fluid $\bar{\theta}_w(t)$, K with	75
	the shifted local day time t, hr at different heat transfer coefficients	
5 7	h_r , W/m^2K [eq. (5-46)]	77
5-7	The variation of the efficiency η , % of the flat plate collector with the	77
	shifted local day time t, hr . at different heat transfer coefficients	
5 0	h_r , W/m^2K [eq. (5-49)]	79
5-8	The variation of the average temperature of the working fluid $\bar{\theta}_w(t)$, K with	17
	the shifted local day time t , hr . at different flow rates of the working fluid [eq. (5-46)]	
5-9	The variation of the efficiency η , % of the flat plate collector with the	81
5-3	shifted local day time t, hr at different flow rates of the working fluid [eq.	01
	(5-49)].	
	(\o i>/]·	