سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

VISION-BASED NAVIGATION FOR A MOBILE ROBOT

BY
Eng. DOAA ABD EL-FATAH ASHMAWY

A thesis submitted to
Shoubra Faculty of Engineering, Zagazig University, Benha branch in
partial fulfillment for the degree of
MASTER OF SCIENCE
in
Electronic Engineering

Under the supervision of

ASS. PROF. DR. M. LOTFY RABEH ELEC. ENGINEERING DEP. ZAGAZIG UNIV. (BENHA BRANCH) SHUBRA DR.ASHRAF M. HAFEZ ELEC. ENGINEERING DEP. ZAGAZIG UNIV. (BENHA BRANCH.).SHUBRA

FACULTY OF ENGINEERING, ZAGAZIG UNIVERSITY (BENHA BRANCH) SHUBRA, CAIRO, EGYPT

2019/15

2004

B | 7 -11 Zagazig University Benha Branch Faculty Of Engineering, Shoubra Electrical Department

VISION-BASED NAVIGATION FOR A MOBILE ROBOT

A thesis submitted to Shoubra Faculty of Engineering, Zagazig University, Benha branch in partial fulfillment for the degree of MASTER OF SCIENCE

in Electronic Engineering

BY Eng. DOAA ABD EL-FATAH ASHMAWY

Approved by the examining committee:

PROF. DR. Taha EL Sayed Taha- Member and external examiner

ASS. PROF. DR. M. Lotfy Rabeh-Thesis advisor

ASS. Prof. Dr. M. Tarek Elewa - Member and internal examiner

To Eleva.

ACKNOWLEDGMENT

I would like to thank Associate Professor Dr. Mohammed Lotfy Rabeh and Dr. Ashraf Mohammed Hafez, my research advisors, for their valuable help, guidance and regarding of this thesis. My conversations with them were always inspirational, informative, and entertaining.

My parents have encouraged me throughout my education and career, and I will always be grateful for their sacrifice, generosity and love. I extend my

gratitude to my husband for his support, patience and assurance.

ABSTRACT

Robot navigation is defined as guiding a mobile robot to a desired destination or along a desired path in an environment characterized by a set of distinct objects, such as obstacles. Obstacles are defined as objects that can block the movement of the robot. Obstacle avoidance is one of the most critical factors in the design of autonomous vehicles such as mobile robots.

The aim of this work is to develop an efficient, robust, map-less navigation algorithm based on computer-vision principles. This navigation algorithm enables the robot to avoid collision with obstacles existing in an indoor environment (e.g. chairs, desks, file cabinets, persons, etc.) and determining which direction (Right, Left, Forward, or Stop) the robot should take.

The developed algorithm is programmed using MATLAB 6 image processing toolbox.

LIST OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii -
ABSTRACT	iii
LIST OF CONTENTS	iv
LIST OF CONTENTS LIST OF FIGURES	vi
	XV.
LIST OF TABLES	AV
CHAPTER 1	
INTRODUCTION	1
1.1Motivation	1
1.2 Algorithm Configuration	2 2 2 3
1.3 Typical Approaches for Vision-Based Navigation	2
1.3.1 Indoor Navigation	. 2
1.3.1.1 Stereo vision	6
1.3.1.2 Map-Based Approaches	9
1.3.1.3 Map-Building	9
1.3.1.4 Map less Navigation	11
1.3.1.5 Range detection	12
1.3.2 Outdoor Navigation	12
1.3.2.1 Outdoor Navigation in Structured Environments	13
1.3.2.2 Unstructured Outdoor Navigation	13
CHAPTER 2	
COMPUTER-VISION TOOLS AND	
TECHNIQUES	4.4
2.1 Why robots need to see	14
2.2 Basic Image-Processing Tools and Terminology	14
2.2.1 Image representation	14
2.2.2 Discrete convolution	15
2.2.3 Image Filtering	17
2.2.3.1 Smoothing Spatial Filters	17
2.2.3.1.1 Mean Filters	18
2.2.3.1.2 Median Filters	20
2.2.3.2 Sharpening Spatial Filters	23 24
2.2.4 Image Segmentation	24 24
2.2.4.1 Image Segmentation by Thresholding	24 24
2.2.4.1.1 Global Thresholding	24

LIST OF FIGURES

	Page
Figure 1.1 Stereo Vision Camera Configuration	3
Figure 1.2 Stereo Images of a Single Scene	4
Figure 1.3 A map of the environment with landmarks indicated	
by circles	6
Figure 1.4 Some used artificial landmarks	7 .
Figure 1.5 A map built by the robot in [14]	9
Figure 1.6 A road scene model	12
Figure 1.7 Martian terrain	13
Figure 2.1 Discrete Convolution—Step 1	. 16
Figure 2.2 Discrete Convolution—Step 2	16
Figure 2.3 Discrete Convolution—Final Product	17
Figure 2.4 Two 3x3 averaging filter masks	18
Figure 2.5 (a) Original flower image	19
Figure 2.5 (b) Filtered image using 3x3 averaging filter	19
Figure 2.6 Filtered image using 7x7 averaging filter	19
Figure 2.7 An example illustrating a 3x3 median filter	21
Figure 2.8 (a) Image corrupted by salt-and-pepper noise	22
Figure 2.8 (b) Filtered image using 3x3 median filter	22
Figure 2.9 (a)Original flower image	. 23
Figure 2.9 (b)Sharpened image	23
Figure 2.10 (a) Model of an ideal edge	26
Figure 2.10 (b) Gray level profile of a horizontal line through the	
Image	26
Figure 2.11 (a) Model of a ramp edge	27
Figure 2.11 (b)Gray level profile of a horizontal line through	
the image	27
Figure 2.12 Roberts cross gradient operators	30
Figure 2.13 Gradient operators	30
Figure 2.13 (a)Prewitt Operator	30
Figure 2.13 (b)Sobel Operator	30
Figure 2.14 A comparison between Canny and Sobel edges	33
Figure 2.14 (a)Original image	33
Figure 2.14 (b)Canny detected edges	33
Figure 2.14 (c)Sobel detected edges	33
Figure 2.15 Laplacian operator	34
Figure 3.1 The system configuration	. 36
Figure 3.2 Typical Office Image	37
Figure 3.3 Filtered (smoothed) image	37
Figure 3.4 Canny edges	38
Figure 3.5 Iteratively thresholded image	38
Figure 3.6 Inverted iteratively thresholded image	39

Figure 3.7 Adaptively thresholded image using the mean	
gray value	39
Figure 3.8 Adaptively thresholded image using the iterative	
thresholding technique	40
Figure 3.9 The final Navigation algorithm Flowchart	42
Figure 3.10 Inverted thresholded image with the 9x17 grid	
Shown	43
Figure 3.11 The navigation grid (Navgrid1)	43
Figure 3.12 The modified navigation grid (Navgrid2) as binary	
Values	44
Figure 3.13 Navgrid2	44
Figure 3.14 The Depth Map and the Navigation Profile	45
Figure 4.1 (a)The original test image	. 48
Figure 4.1 (b)The median filtered image	48
Figure 4.1 (c)The Canny edges	48
Figure 4.2 (a)The original test image	49
Figure 4.2 (b) The median filtered image	49
Figure 4.2 (c)The Canny edges	49
Figure 4.3 (a)The original test image	49
Figure 4.3 (b)The median filtered image	50
Figure 4.3 (c)The Canny edges	50
Figure 4.4 (a)The original test image	50
Figure 4.4 (b)The median filtered image	50
Figure 4.4 (c)The Canny edges	51
Figure 4.5 (a) The original test image	51
Figure 4.5 (b)The median filtered image	51
Figure 4.5 (c)The Canny edges	51
Figure 4.6 (a) The original test image	52
Figure 4.6 (b)The median filtered image	52
Figure 4.6 (c)The Canny edges	52
Figure 4.7 (a)The original test image	52
Figure 4.7 (b)The median filtered image	53
Figure 4.7 (c)The Canny edges	53
Figure 4.8 (a)The original test image	54
Figure 4.8 (b)The median filtered image	54
Figure 4.8 (c)The adaptively thresholded image using the	C 4
mean gray value	54
Figure 4.8 (d)The adaptively thresholded image using	5.4
the iterative thresholding technique	54
Figure 4.9 (a)The original test image	55
Figure 4.9 (b) The median filtered image	55
Figure 4.9 (c)The adaptively thresholded image using the	·
mean gray value	55

Figure 4.9 (d) The adaptively thresholded image using	
the iterative thresholding technique	55
Figure 4.10 (a) The original test image	56
Figure 4.10 (b) The median filtered image	56
Figure 4.10 (c) The adaptively thresholded image using the	
mean gray value	56
Figure 4.10 (d) The adaptively thresholded image using	
the iterative thresholding technique	56
Figure 4.11 (a) The original test image	57
Figure 4.11 (b) The median filtered image	57
Figure 4.11 (c)The adaptively thresholded image using the	
mean gray value	57
Figure 4.11 (d)The adaptively thresholded image using	
the iterative thresholding technique	57
Figure 4.12 (a)The original test image	58
Figure 4.12 (b) The median filtered image	58
Figure 4.12 (c)The adaptively thresholded image using the	••
mean gray value	58
Figure 4.12 (d)The adaptively thresholded image using	
the iterative thresholding technique	58
Figure 4.13 (a)The original test image	59
Figure 4.13 (b) The median filtered image	59
Figure 4.13 (c)The adaptively thresholded image using the	50
mean gray value	59
Figure 4.13 (d) The adaptively thresholded image using	59
the iterative thresholding technique	60
Figure 4.14 (a)The original test image	60
Figure 4.14 (b)The median filtered image	. 00
Figure 4.14 (c)The adaptively thresholded image using the	60
mean gray value	. 00
Figure 4.14 (d) The adaptively thresholded image using	60
the iterative thresholding technique	61
Figure 4.15 (a) The original test image	61
Figure 4.15 (b) The median filtered image	62
Figure 4.15 (c) The thresholded image	62
Figure 4.15 (d) The inverted thresholded image	62
Figure 4.15 (e)The navigation grid	62
Figure 4.15 (f) The depth map	0.2
Figure 4.15 (g)A table containing the navigation profile (NP), the three direction weights Right, Left, and	
stop and the course the robot should take	63
	63
Figure 4.16 (a)The original test image Figure 4.16 (b)The median filtered image	63
Figure 4.16 (b) The median intered image Figure 4.16 (c) The thresholded image	63
Figure 4.16 (d) The inverted thresholded image	63
rigure 4.10 (a) the inverted unesholded image	

Figure 4.16 (e)The navigation grid	64
Figure 4.16 (f)The depth map	64
Figure 4.16 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	
stop and the course the robot should take	64
Figure 4.17 (a)The original test image	64
Figure 4.17 (b)The median filtered image	65
Figure 4.17 (c) The thresholded image	65
Figure 4.17 (d) The inverted thresholded image	65
Figure 4.17 (e)The navigation grid	65
Figure 4.17 (f)The depth map	66
Figure 4.17 (g)A table containing the navigation profile (NP) ,	
the three direction weights Right, Left, and	
stop and the course the robot should take	66
Figure 4.18 (a) The original test image	66
Figure 4.18 (b)The median filtered image	66
Figure 4.18 (c)The thresholded image	67
Figure 4.18 (d)The inverted thresholded image	67
Figure 4.18 (e)The navigation grid	67
Figure 4.18 (f)The depth map	67
Figure 4.18 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	
stop and the course the robot should take	68
Figure 4.19 (a) The original test image	68
Figure 4.19 (b) The median filtered image	68
Figure 4.19 (c)The thresholded image	68
Figure 4.19 (d)The inverted thresholded image	68
Figure 4.19 (e)The navigation grid	69
Figure 4.19 (f)The depth map	69
Figure 4.19 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	60
stop and the course the robot should take	69
Figure 4.20 (a) The original test image	69
Figure 4.20 (b)The median filtered image	70
Figure 4.20 (c)The thresholded image	70
Figure 4.20 (d)The inverted thresholded image	70
Figure 4.20 (e)The navigation grid	70
Figure 4.20 (f)The depth map	71
Figure 4.20 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	5 1
stop and the course the robot should take	71
Figure 4.21(a)The original test image	71
Figure 4.21(b)The median filtered image	71
Figure 4.21(c)The thresholded image	72
Figure 4.21(d)The inverted thresholded image	72

Figure 4.21(e)The navigation grid	72
Figure 4.21(f)The depth map	72
Figure 4.21(g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	
stop and the course the robot should take-	73
Figure 4.22 (a) The original test image	73
Figure 4.22 (b) The median filtered image	73
Figure 4.22 (c) The thresholded image	73
Figure 4.22 (d)The inverted thresholded image	73
Figure 4.22 (e)The navigation grid	74
Figure 4.22 (f)The depth map	74
Figure 4.22 (g)A table containing the navigation profile (NP)	
the three direction weights Right, Left, and	
stop and the course the robot should take	74
Figure 4.23 (a) The original test image	74
Figure 4.23 (b)The median filtered image	75
Figure 4.23 (c)The thresholded image	75
Figure 4.23 (d)The inverted thresholded image	75 75
Figure 4.23 (e)The navigation grid	75
Figure 4.23 (f)The depth map	76
Figure 4.23 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	5 .6
stop and the course the robot should take	76
Figure 4.24 (a)The original test image	76
Figure 4.24 (b)The median filtered image	76
Figure 4.24 (c)The thresholded image	. 77
Figure 4.24 (d)The inverted thresholded image	77
Figure 4.24 (e)The navigation grid	77
Figure 4.24 (f)The depth map	77
Figure 4.24 (g)A table containing the navigation profile (NP),	
the three direction weights Right, Left, and	70
stop and the course the robot should take	78
Figure 4.25 (a)The original test image	78
Figure 4.25 (b)The median filtered image	78
Figure 4.25 (c)The thresholded image	78
Figure 4.25 (d)The inverted thresholded image	78
Figure 4.25 (e)The navigation grid	79 70
Figure 4.25 (f)The depth map	79
Figure 4.25 (g)A table containing the navigation profile (NP) ,	
the three direction weights Right, Left, and	70
stop and the course the robot should take	79
Figure 4.26 (a)The original test image	79
Figure 4.26 (b)The median filtered image	80
Figure 4.26 (c)The thresholded image	80
Figure 4.26 (d)The inverted thresholded image	80