

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

APPLICATIONS OF UNMANNED AERIAL VEHICLE IN SMART CITY PLANNING

By

Haiam Elkadahy Shahin Elmetwaly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

APPLICATIONS OF UNMANNED AERIAL VEHICLE IN SMART CITY PLANNING

By **Haiam Elkadahy Shahin Elmetwaly**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in believed

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hebat-Allah Mustafa Mourad

Professor of Associate Professor of

Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

Communications Engineering

Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

Assoc. Prof. Dr. Ahmed Khattab

Fathy Khattab

Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

APPLICATIONS OF UNMANNED AERIAL VEHICLE IN SMART CITY PLANNING

By **Haiam Elkadahy Shahin Elmetwaly**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee	
Prof. Dr. Hebat-Allah Mustafa Mourad	Thesis Main Advisor
Assoc. Prof. Dr. Ahmed Khattab Fathy Khattab	Advisor
Prof. Dr. Magdy M. S. El-Soudani	Internal Examiner
Prof. Dr. Ahmed El-Sayed El-Mahdy	External Examiner
(Dean of the Faculty of Information Engineering and Tech German University in Cairo)	inology,

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Haiam Elkadahy Shahin Elmetwaly

Date of Birth: 01 January 1986

Nationality: Egypt

E-mail: haiamshahin@yahoo.com

Phone: +201010286665

Address: Madinaty, Cairo, Egypt

Registration Date: 01/3/2015 **Awarding Date:**/2021 **Degree:** Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Hebat-Allah Mustafa Mourad

Assoc. Prof. Dr. Ahmed Khattab Fathy Khattab

Examiners:

Prof. Dr. Hebat-Allah Mustaf Mourad (Thesis main advisor)

Assoc. Prof. Ahmed Khattab Fathy Khattab (Advisor)

Prof. Magdy M. S. El-Soudani (Internal examiner)

Prof. Ahmed El-Sayed El-Mahdy (External examiner) (Dean of the Faculty of Information Engineering and Technology,

German University in Cairo)

Title of Thesis:

Applications of Unmanned Aerial Vehicle in Smart City Planning.

Key Words:

Unmanned Aerial Vehicles; Genetic Algorithms; Trip Planning; Observability, Non-Dominated Sorting Genetic Algorithms.

Summary:

In this thesis, we have presented smart cities and their significance. Moreover, we have addressed the utilization of UAVS to carry out few tasks inside smart cities. The primary task was to gather data from smart meters with the objective of diminishing the total annual cost of collecting data from smart meters. The second task was to observe the distribution system, and the objective of this task was to get the most noteworthy degree of observability with minimum total cost per year. MATLAB has been used to solve the presented problems and the results showed a significant performance, where more than one case was studied, the results were compared using more than one algorithm.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Haiam Elkadahy Shahin Elmetwaly	Date:/ 2021
Signature:	

Acknowledgments

First and foremost, I am thankful to God, the most gracious most merciful for helping me to finish this work.

It is a pleasure to acknowledge my supervisors that have profoundly endued me with guidance and support. I wish to express my sincere thanks to Prof. Dr. Hebat-Allah M. Mourad and Prof. Ahmed Khattab, Cairo University, for their valuable supervision, continuous encouragement, useful suggestions, and active help during the course of this work.

I also extend my gratitude to Prof Dr. Mahmoud H. Ismail and Prof. Dr. Mostafa F. Shaaban from American University of Sharjah, for their continuous encouragement, useful suggestions, and active help during the course of this work.

Finally, I am indebted to my father, my mother, my sister and my husband, who are always beside me in all happy as well as hard times. Also, I am indebted to my husband's mother (Eng. Fatima Taha), who encouraged me and pushed me to complete my master's study.

Table of Contents

Lis	t of Ta	bles			VI
Lis	t of Fig	gures			VII
Lis				IX	
Lis				XII	
Ab	stract				XVIII
1	Intro	duction	1		1
	1.1	Smart	city		1
		1.1.1	Benefits	of smart city	1
		1.1.2	Smart cit	y main components	2
			1.1.2.1	Smart grid overview	2
			1.1.2.2	Unmanned Aerial Vehicle (UAV) overview	3
			1.1.2.3	Smart meters	6
		1.1.3	Distribut	ion system observation	9
			1.1.3.1	Distribution system	9
			1.1.3.2	System observability	10
		1.1.4	Example		11
	1.2			UAV for smart meters data collection or distribution on	13
	1.3	Thesis	contributi	ons	13
	1.4	Thesis	organizati	on	15
2	Liter	ature R	Review		16
	2.1	Introd	uction		16
	2.2	The Unmanned Aerial Vehicle literature			18
	2.3	Smart meters literature			21
	2.4	Obser	ving the di	stribution system literature	22
	2.5	Conclu	usion		23
3	Opti	mizatio	n Algorith	ms	24
	3.1	Over v	view of opt	imization techniques	24
	3.2	Geneti	ic Algorith	m	24
			· ·	inology	25

		3.2.2	GA structure		
			3.2.2.1 Selection		
			3.2.2.2 Cross over		
			3.2.2.3 Mutation		
		3.2.3	Advantages of GA		
	3.3	Branc	h and Bound		
		3.3.1	Example		
	3.4	Simul	ation-Annealing		
	3.5	A mul	lti-objective optimization problem		
		3.5.1	Non-Dominating Sorting Genetic Algorithm-II		
			3.5.1.1 Crowding distance		
			3.5.1.2 Pareto frontier		
	3.6	Concl	usion		
4	Syste	System Model and Problem Formulation			
	4.1	Introd	uction		
		4.1.1	System model		
	4.2	Proble	em formulation		
		4.2.1	Constraints for trip planning		
		4.2.2	Constraints for battery sizing of UAV		
	4.3	Concl	usion		
5	UAV	s for C	ollecting Data from Smart Meters		
	5.1	Introd	uction		
	5.2	Sugge	ggested solution approach		
		5.2.1	Chromosome		
	5.3	Simul	ation result		
		5.3.1	Smart meter specifications		
		5.3.2	Buildings' density effect		
		5.3.3	City area effect		
		5.3.4	Data collection recurrence effect		
		5.3.5	The effect of number of runs on the sensitivity of the solution		
		5.3.6	The effect of the used heuristic algorithm on the sensitivity of the solution		
	5.4	Specia	al case study		
		5.4.1	Trip planning constraints		

		5.4.2	UAV power source sizing constraints	65	
		5.4.3	Proposed solution approach	65	
		5.4.4	Simulation results	66	
	5.5	Conclu	asion	67	
6	UAVs for observing distribution system				
	6.1	Introdu	action	68	
	6.2	Proble	m formulation	69	
	6.3	Propos	osed solution approach		
	6.4	Simula	ation results and discussion	72	
		6.4.1	Compromising point	74	
		6.4.2	Effect of observation hours per day	75	
		6.4.3	Effect of the frequency of observation	76	
	6.5	Conclu	usion	78	
7	Conclusion and future work				
	7.1	Conclusion			
	7.2	Future	work	80	
Re	ference	es		82	

List of Tables

2.1	Comparison for first system	22
2.2	Comparison for second system	22
5.1	Wireless communication technologies	52
5.2	UAV specifications	55
5.3	Batteries specifications	56
5.4	Simulation results for city area 1 km × 1 km	57
5.5	Simulation results for city area 2 km × 2 km	57
5.6	Simulation results for city area 3 km × 3 km	58
5.7	Different runs for case of a 1 Km × 1 Km city and 10 buildings/ km ² density	63
5.8	Genetic algorithm & simulated annealing results	63
5.9	Simulation results for only one UAV	66
6.1	Simulation results for monthly observation	76
6.2	Simulation result for weekly observing	77

List of Figures

1.1	Smart city components	2
1.2	Smart grid components	3
1.3	UAV for accident	4
1.4	UAV for traffic violations catching	4
1.5	UAV for hazard detection	5
1.6	UAV as a complement to terrestrial cellular networks	5
1.7	Functions of smart meter	6
1.8	Data collection techniques from smart meters	7
1.9	Unbalanced system	12
1.10	Suggested smart applications of UAV in smart city	14
3.1	Chromosome	25
3.2	GA methodology	26
3.3	One point crossover	27
3.4	Multi point crossover	28
3.5	Uniform crossover	28
3.6	Whole arithmetic recombination	28
3.7	Davis' order crossover (OX1)	29
3.8	Bit flip mutation	29
3.9	Swap mutation	30
3.10	Scramble mutation	30
3.11	Inversion mutation	30
3.12	Best route	34
3.13	Simulated-annealing	36
3.14	NDSGA-II	37
3.15	Crowded-distance	38
3.16	Pareto frontier	39
4.1	System model	42
4.2	Reflections of total annual cost and observability	43
4.3	Tilt angle	49
5.1	Data collection	50
5.2	Planning for data collection from smart meter	52
5.3	Branch and bound genetic algorithm	53

5.4	Chromosome for multi-UAVs	54
5.5	Monthly collection results	60
5.6	Planning of trips for monthly collection in 1 km \times 1 km city with intensity 10 buildings/ km ²	61
5.7	Planning of trips for monthly collection in 3 km \times 3 km city with intensity 10 buildings/ km ²	62
5.8	Results for a city with a density of 30 buildings/ km ² ····································	63
5.9	Chromosome for one UAV	67
6.1	Distribution system observation	70
6.2	Planning for distribution system observation	71
6.3	Joint NDSGA and TSP algorithm process	72
6.4	Epri-Ckt5 system	73
6.5	The Pareto front for 2 hours monitoring per day monthly	74
6.6	The Pareto front for 1-hour monitoring per day weekly	75
6.7	The Pareto front for 1-hour observation per day monthly	78