

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

"Studying the Role of Fat Mass and Obesity Associated (FTO) Gene Polymorphism in Treatment Outcome of Hepatitis C Virus"

A thesis submitted for partial fulfillment of master degree in pharmaceutical sciences (Biochemistry)

Bγ

Ahmed Saad Yousef Ibrahim

Demonstrator, Biochemistry Department, Faculty of pharmacy, Al-azhar University-Assiut Branch.

Bachelor of Pharmaceutical Sciences, Al Azhar University-Assiut branch, 2012

Under Supervision of

Prof.Dr. Hala Osman EL-Mesallamy

Professor of Biochemistry, Faculty of Pharmacy, Ain Shams University& Dean of Faculty of Pharmacy, Sinai University, Kantara Branch

Prof. Dr. Nahla Shehata Kotb Dr. Al-Aliaa Mohamed Sallam

Professor of Biochemistry, Egyptian Drug Authority

Assistant Professor of Biochemistry, Faculty of Pharmacy, Ain Shams University

Biochemistry Department Faculty of Pharmacy Ain Shams University 2021

بسم الله الرحمن الرحيم الله الأخين المنفع الله الخين المنفوا مِنْكُمْ وَالَّذِينَ الْمَنُوا مِنْكُمْ وَالَّذِينَ الْمَنُوا مِنْكُمْ وَالَّذِينَ الْمَنُوا الْمُعْمَلُونَ أُوتُوا الْعِلْوَ حَرَجَاتِ وَاللَّهُ بِمَا تَعْمَلُونَ أُوتُوا الْعِلْوَ حَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ الْمُنْ اللهُ عَلَيْلُ "

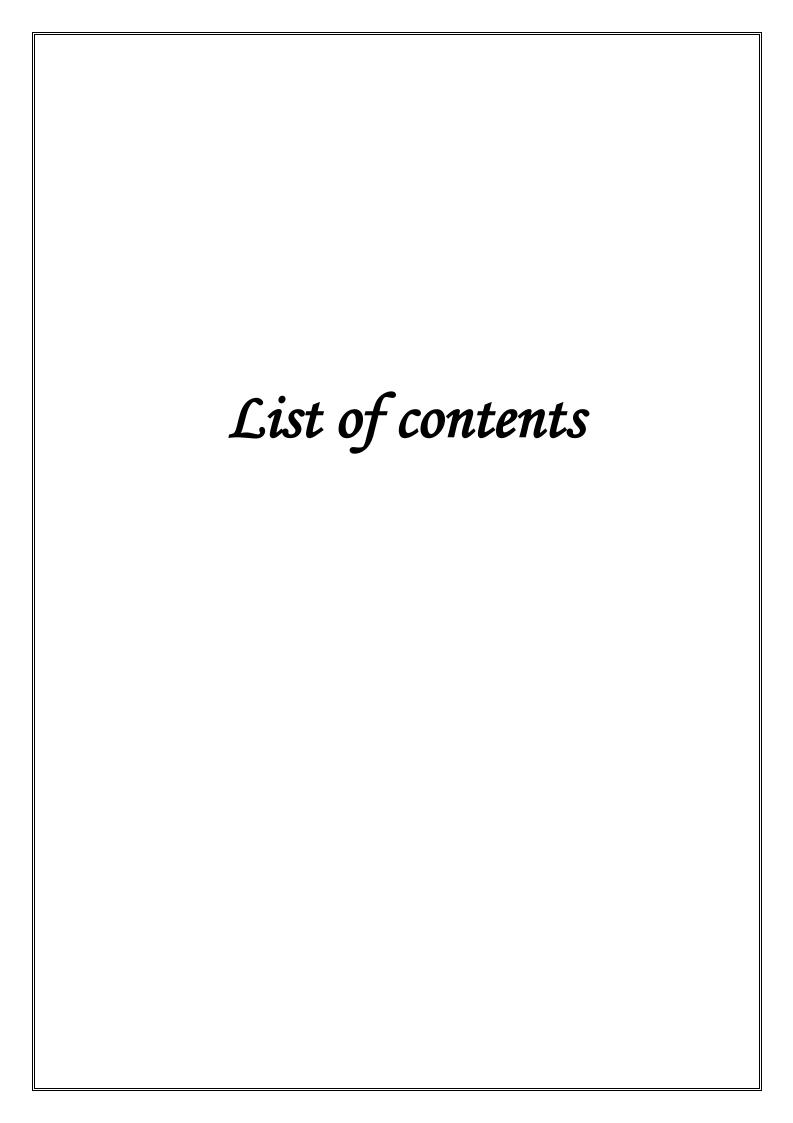
حدق الله العظيم

سورة المجادلة من الاية ١١

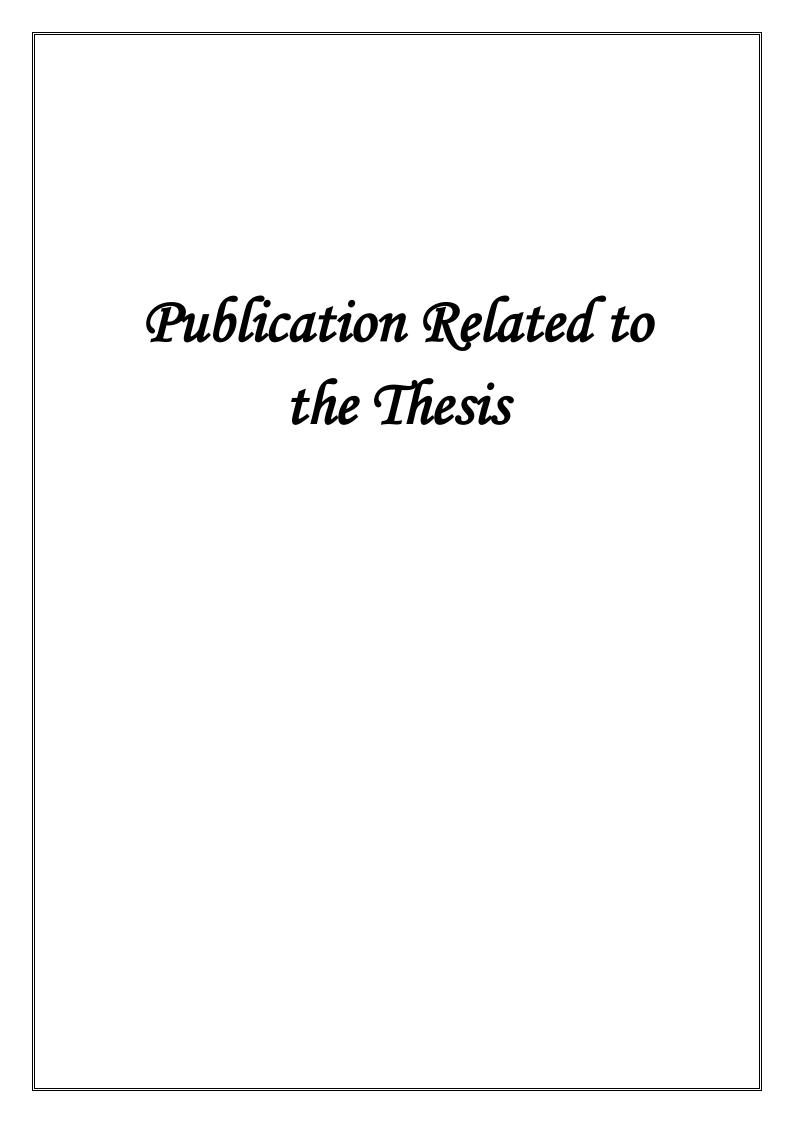
Acknowledgements

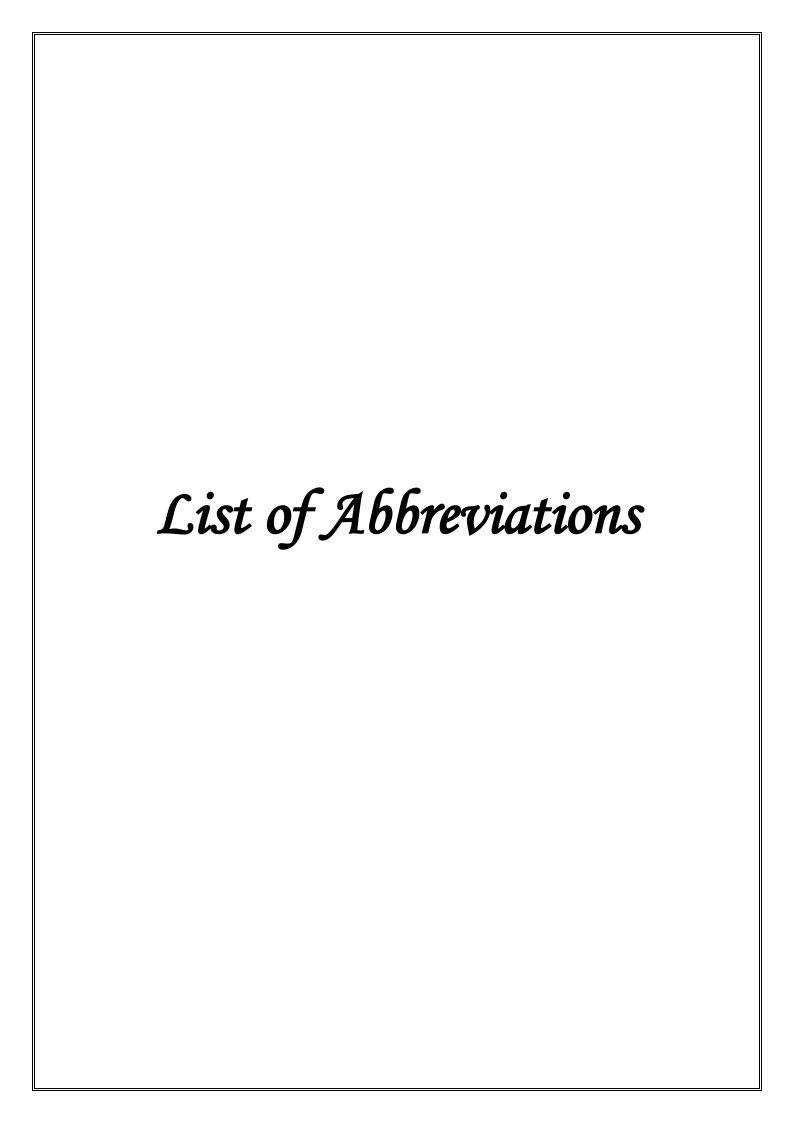
Acknowledgements

I truly thank **God** for His kind help, guidance and enlightening my way to accomplish this work. May it be a step towards gaining His mercy and blessings and may **God** accept from us the good deeds, and forgive us in shortcomings.


My deepest thanks and gratitude goes to my **Prof. Dr. Hala Osman El-Mesallamy, Professor of Biochemistry, Ain Shams University and Dean of Faculty of Pharmacy, Sinai University, Kantara Branch** for her dedicated supervision, precious time, great efforts, faithful advice, continuous unlimited support and encouragement, and kind gestures in every moment throughout all this work. May it be added to her good deeds.

I would also like to express my gratefulness and appreciation for **Prof. Dr. Nahla Shehata Kotb, Professor of biochemistry at Egyptian Drug Authority,** for her kind cooperation, facilitating the work a lot.


Blessed I am to work under the supervision of **Dr. Al-Aliaa Mohamed Sallam, Assistant Professor of Biochemistry, Faculty of Pharmacy, Ain Shams University,** for her continuous, kind, priceless help, quick feedbacks and guidance in every step throughout this work. I wish her all the success.


I am truly thankful for **Dr. Mai Ismail Mehrez, fellow of hepatology, National Hepatology and Tropical Medicine Research Institute.** She was really supporting, helpful and very cooperative. I'm grateful to her.

Never to be forgotten or repaid back; the priceless help, patience, support and understanding of my **family** though out of this work.

Subject	Page
Publication Related to the Thesis	i
LIST OF ABBREVIATIONS	ii
LIST OF TABLES	iv
LIST OF FIGURES	V
1. INTRODUCTION AND AIM OF THE WORK	1
2. LITERATURE REVIEW	4
2.1 Epidemiology and Natural History of hepatitis C virus infection.	4
2.2 Hepatitis C virus spreading and replication	9
2.3 Treatment of Chronic Hepatitis C	10
2.4 The relation of alpha -feto protein level and liver disease	16
2.5 Association of hepatitis C virus with insulin resistance.	17
2.6 Factors affecting on hepatitis C virus treatment	20
2.7 Single Nucleotide Polymorphisms of Host Genes	21
2.8 Fat mass and obesity-associated gene	22
3. SUBJECTS AND METHODS	26
4. RESULTS	57
5. DISCUSSION	74
6. SUMMARY AND CONCLUSIONS	82
7. RECOMMENDATIONS	86
8. REFERENCES	87
ARABIC SUMMARY	٣_١

Abbreviation Definition

AFP Alpha-fetoprotein

BMI Body mass index

CHC Chronic Hepatitis C

DAAs Direct acting antivirals

ELISA Enzyme-linked immunosorbant assay

FPG Fasting plasma glucose

FTO Fat Mass and Obesity Associated Gene

GWAS Genome wide association studies

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HOMA Homeostatic model assessment

HWE Hardy–Weinberg equilibrium

IP3 inosine triphosphatase

IR Insulin resistance

IFN-α Interferon alpha

ISGs Interferon stimulated genes

JAK-STAT Janus kinase-signal transducer and activator of transcription

LDLr low-density lipoprotein cholesterol receptor

MHC major histocompatibility complex

NR Non responders

NS Non structural

OR Odds ratio

PEG-IFN-α Pegylated interferon alpha

RBV Ribavirin

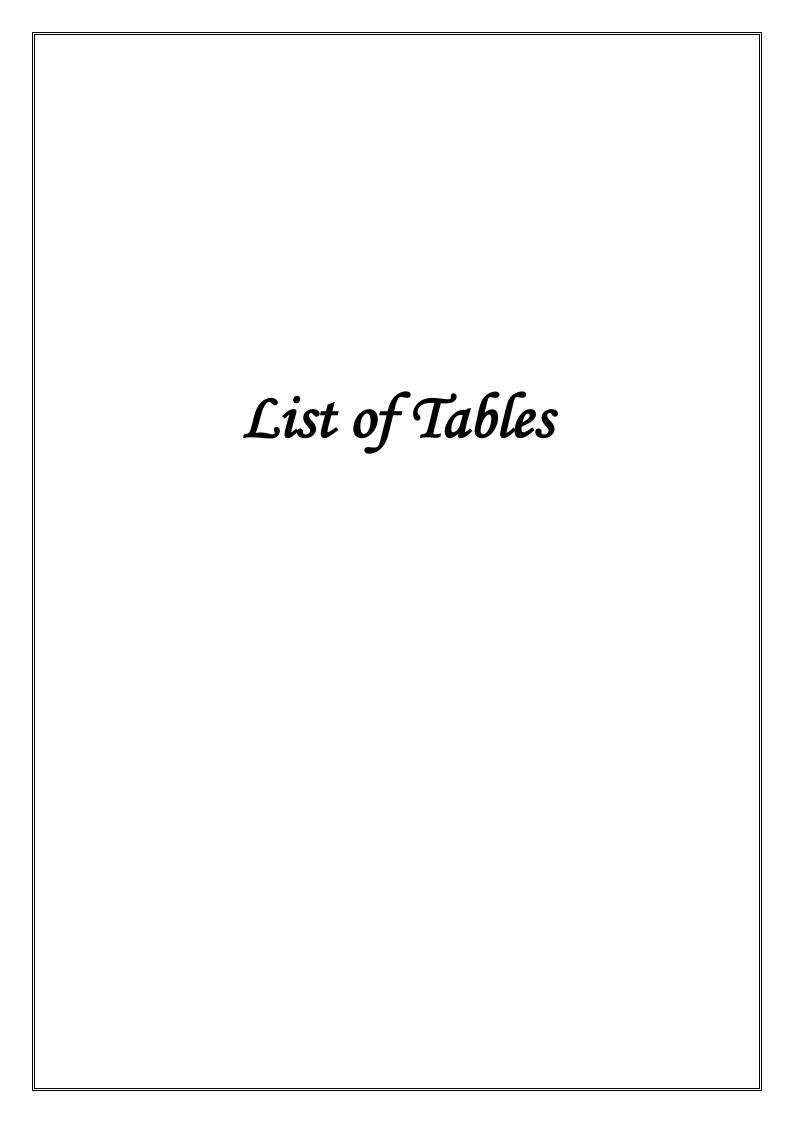
Pi3K phosphatidylinositide 3-kinases

PKB Protein kinase B

List of Abbreviations

ROC Receiver operating characteristic

SD Standard deviation


SNPs Single nucleotide polymorphisms

SOF Sofosbuvir

SVR Sustained virologic response

T2DM Type 2 diabetes mellitus

UTRs Untranslated regions

List of Tables

Table	Title	Page	
No.		- 4.50	
1	Targets for hepatitis C virus specific antiviral therapy	13	
2	Clinical and virological characteristics of HCV infected study population	58	
3	Liver function tests of the studied groups	59	
4	Hematologic parameters of the studied group	60	
5	Fasting plasma glucose, serum insulin and Homeostatic model assessment –	61	
	insulin resistance of the studies groups	OI.	
6	Allelic frequencies in the sample population	62	
7	Dominant allele frequencies	62	
8	Recessive allele frequencies	62	
9	Allelic frequencies in sustained virological response and non response groups	63	
10	The Hardy–Weinberg equilibrium test for the population sample	64	
11	Association between Fat Mass and Obesity Associated gene genotypes	65	
	recessive model and investigated parameters		
12	Association between Fat Mass and Obesity Associated Gene genotypes	66	
	dominant model and investigated parameters		
13	Correlations between Homeostatic model assessment-insulin resistance and	68	
	biochemical investigations in the studied group.		
14	Correlations between alpha-feto protein and biochemical investigations in the	69	
17	studied groups	U)	