

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY

AIN SHAMS UNIVERSITY

Faculty of Computer &Information Sciences
Information Systems Department

Events Detection Using Data Analytics on Social Networks

A Thesis submitted in partial fulfillment of the requirements for the degree. of Master in Computer and Information Sciences

To

Department of Information Systems
Faculty of Computer and Information Sciences
Ain Shams University

By Esraa Karam Mohamed Ahmed Samak

Information Systems Department,
Faculty of Computer and Information Sciences,
Ain Shams University

Under the supervision of

Tarek Fouad Gharib

Professor and Head of Information Systems Department Faculty of Computer and Information Sciences Ain Shams University

Wedad Hussein Reyad

Assistant Professor, Information Systems Department Faculty of Computer and Information Sciences Ain Shams University

September -2021

Acknowledgement

First of all, thanks to God for giving me the will and strength to finish this work. Great thanks to every member of my family who has pushed me to go on and pursue my dream.

I wanted to convey my profound appreciation to my supervisor, Prof. Dr. Tarek F. Gharib, he convincingly directed and supported me to do the right thing even when the path got tough. Without his persistent help, the goal of this research would not have been realized.

I would also like to extend my deepest gratitude to Dr. Wedad Hussein for being my friend, my mentor and my support all through the work.

Finally, I would like to thank everyone (friends, professors or students) who trusted in my abilities, even more than I did, and pushed me to always be better.

Abstract

Every day, millions of people write and trade news on social media, making it a major source of information. Therefore, the use of social media in everyday life has become a necessity for keeping up with the news, as well as making inquiries and requesting assistance. When an event occurs, news spread quicker on social media than on other news sites, making them a good source for event detection. Text analysis is the most popular method for detecting events in social networks.

In the event of an emergency, social media can be quite useful in acquiring a better knowledge of the situation. The information about the situation starts to circulate on social media, with the aim of raising awareness and ensuring that everyone is aware of all important instructions and can request help. This occurs due to the fact that this information is accessed directly from those who are affected. If the information gathered is successfully used, it may be used to respond to people with the appropriate needs.

Trying to reach the affected people to help them through social media is a difficult process in the presence of a lot of data circulating on these sites, which require appropriate techniques to extract the required information during the occurrence of the crisis. In this work, we proposed a hybrid approach for detecting affected people and their needs during crises that is based on combination of text analysis techniques and location identification process.

We proposed a hybrid strategy for finding impacted people during crises and extracting their needs in terms of asking for help that incorporates text analysis and location identification algorithms. The use of location data is done to filter out persons who are writing about the situation without being affected. The experiment on Twitter data revealed that combining text analysis with location produced better results, with an accuracy of 96 % against 87 % when using text analysis alone.

We tried to detect the affected people's needs and answer them with the suitable instructions and guidelines by using question-answering techniques. These techniques are based on natural language processing techniques and neural networks to extract the needs of those who have been impacted and respond appropriately. The proposed approach provide appropriate guidance with a precision of 0.81, a recall of 0.76 and an f-score of 0.78. we testing our approach using twitter data from various type of crises.

Table of Contents

Ch	apte	r		Page		
Abstract						
Table of Contents						
List of Figures						
List of Tables						
List of Abbreviations V						
1-	Inti	oduction		1		
	1.1	Motiv	ation	2		
	1.2	Proble	em Statement	2		
	1.3	Object	tive	4		
	1.4	Thesis	s Organization	4		
2	n					
<u>2-</u>		kground		6		
	2.1		tection	8		
			Preprocessing Techniques	9		
			Detecting Event	10		
			Event Ranking	13		
			Event Summarization	13		
	2.2	Crisis De	tection and Management	13		
3-	- Related Work			17		
	3.1	Generic E	Event Detection	18		
	3.2			21		
			Oata Collection	22		
			Crisis Type Detection.	23		
			Affected People detection	29		
			Location Identification.	30		
			Extracting Needs of Affected people	33		
	3.3		7 Pro-10-10-10-10-10-10-10-10-10-10-10-10-10-	35		
		-3				
4-	Hyl	orid Appro	oach for Detecting Affected People in Crises	37		
-	4.1	The Prope	osed Approach	38		

	4.2	Text Analysis Techniques					
		4.2.1	Text Preprocessing	39			
		4.2.2	Feature Extraction	40			
			A. Rule-based Methodology	41			
			B. Linguistic Features	42			
	4.3	Machin	ne Learning techniques	42			
	4.4	Location	on Identification	43			
	4.5	Results	s and Discussion	46			
		4.5.1	Datasets	46			
		4.5.2	Evaluation Parameters	47			
		4.5.3	Evaluating Classification Parameters and Feature	49			
			Extraction				
		4.5.4	Studying the Effect of Location Identification	50			
	4.6	Summa	ary	59			
_	.			60			
5-			Needs of Affected people	60			
	5.1	-	oposed Approach Architecture	61			
	5.2		ext Preparation Phase	62			
		5.2.1	Text Preprocessing	62			
		5.2.2	Word Embedding	63			
	5.3	_	on Answering Techniques	64			
	5.4	Results	s and Discussion	66			
		5.4.1	Datasets	66			
		5.4.2	Evaluation Parameters	69			
		5.4.3	Evaluating Question answering model	70			
	5.5	Summa	ary	87			
6-	Con	clusion	s and Future Work	89			
		Conclu	usion	89			
		Future Work					
	Pub	lication	18	92			
	References						

Arabic Summary

List of Figures

Fig. 2.1	The general event detection architecture	9
Fig. 4.1	Architecture of Proposed Approach	39
Fig. 4.2	Result of Preprocessing Step	40
Fig. 4.3	Result of Rule-based Techniques	41
Fig. 4.4	The Location Identification by user's friends	45
Fig. 4.5	Classification Accuracy and Quality Measures for Text Analysis	50
Fig. 4.6	Location Identification Results	52
Fig. 4.7	The text analysis accuracy for each crisis	55
Fig. 4.8	Prediction Quality with Location Identification for each crisis	56
Fig. 4.9	The result of different values of maximum number of friends	58
Fig. 5.1	The Architecture of BERT model	65
Fig. 5.2	Example of crises guidelines text data	67
Fig 5.3	Evaluation Measures for QA models	76
Fig 5.4	Average execution time of transformers for all crises	86
Fig 5.5	Average execution time of transformers for one crisis	86

List of Tables

Table 4.1	Datasets Statistics	46
Table 4.2	Keywords list used for crawling	47
Table 4.3	Classification Measures for Text Analysis	49
Table 4.4	The improvement of using Location Identification process	51
Table 4.5	The various kind of crisis in database	53
Table 4.6	The various users for each crisis	54
Table 4.7	Comparative accuracy between text and location for each	54
	crisis	
Table 4.8	The result of different values of maximum number friends	57
Table 5.1	Examples of Questions and their answers dataset	67
Table 5.2	The evaluation measures for BERT model	71
Table 5.3	Examples of BERT results	71
Table 5.4	Examples of BERT results from Tweets dataset	72
Table 5.5	The evaluation measures for QA models	75
Table 5.6	Examples of Question Generation for Tweets dataset	78
Table 5.7	Examples of BERT results from Tweets dataset	78
Table 5.8	Examples of DistilBERT results from Tweets dataset	80
Table 5.9	Examples of T5 results from Tweets dataset	83
Table5.10	The average of execution time of transformers	85

List of Abbreviations

ML Machine Learning

NLP Natural Language Processing

POS Part Of Speech

QA Question Answering
NN Neural Networks
DL Deep Learning

DT Decision Tree

SVM Support Vector Machine

NB Naïve Bayes BOW Bag Of Words

BERT Bidirectional Encoder Representation transformer

RNN Recurrent Neural Networks
MLM Masked Language Modeling

NSP Next Sentence Prediction

Chapter 1

INTRODUCTION

Chapter 1

Introduction

Social networks, which have become a vital part of online users' daily life, improve their ability to interact and communicate. The most popular social media networks are used by a large number of people: On December 31, 2018, Facebook had 2.32 billion monthly active users, YouTube 1.3 billion, WhatsApp 1.5 billion, Instagram 1 billion, and Twitter 259 million (MAU). People use social networking sites not only in regular life, but also in times of crisis and disaster, thanks to the spread of social networking sites.

Users have recently become more aware of social networking sites. The distribution of official and basic news on it started as a way of disseminating vital information, and many people began to use social media to track all activities and their progress, as well as to seek help in times of emergency.

Because social networking platforms are the primary source of information distribution, researchers are increasingly employing them to detect the occurrence of disasters and natural crises. The term "crisis informatics" is often used to describe this field of study. It was introduced as "multi-disciplinary field combining computing and social science knowledge of disasters; its central tenet is that people use personal information and communication technology to respond to disaster in creative ways to cope with uncertainty." [1].

1.1 Motivation

During crises, the use of social media rises as people attempt to contact family and friends and inquire about their wellbeing. As a result, many people begin to share knowledge about food and shelter, as well as all of the available assistance, and people begin to connect in order to assist. People's use of social media increased during the outbreak of crises because most conventional communication systems, such as mobile networks, are cut off in many violent crises such as earthquakes or floods. As a result, several organizations have begun to concentrate on the assistance that is needed through social media and how to respond to the demand [32].

During a disaster, humanitarian organizations need various details about the situation that are classified as different categories or event types, such as "reports of wounded, stranded, or deceased persons," "urgent needs of victims," and "infrastructure damage reports," to prepare relief operations. The affected people use microblogging platforms like Twitter to spread this knowledge. As a result, In this time-sensitive situation, social networking can be helpful, but analyzing and extracting valuable information from vast volumes of crisis-related data available on social media can be difficult [31]

1.2 Problem Statement

The method of leveraging text data to find focused events using natural language processing and machine learning techniques is termed as the event detection method from social media. In the event of a crisis, the event detection process strives to identify the type of crisis, the present condition