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Abstract

Every day, millions of people write and trade news on social media, making
it a major source of information. Therefore, the use of social media in
everyday life has become a necessity for keeping up with the news, as well
as making inquiries and requesting assistance. When an event occurs, news
spread quicker on social media than on other news sites, making them a
good source for event detection. Text analysis is the most popular method

for detecting events in social networks.

In the event of an emergency, social media can be quite useful in acquiring a
better knowledge of the situation. The information about the situation starts
to circulate on social media, with the aim of raising awareness and ensuring
that everyone is aware of all important instructions and can request help.
This occurs due to the fact that this information is accessed directly from
those who are affected. If the information gathered is successfully used, it

may be used to respond to people with the appropriate needs.

Trying to reach the affected people to help them through social media is a
difficult process in the presence of a lot of data circulating on these sites,
which require appropriate techniques to extract the required information
during the occurrence of the crisis. In this work, we proposed a hybrid
approach for detecting affected people and their needs during crises that is
based on combination of text analysis techniques and location identification

process.



We proposed a hybrid strategy for finding impacted people during crises and
extracting their needs in terms of asking for help that incorporates text
analysis and location identification algorithms. The use of location data is
done to filter out persons who are writing about the situation without being
affected. The experiment on Twitter data revealed that combining text
analysis with location produced better results, with an accuracy of 96 %

against 87 % when using text analysis alone.

We tried to detect the affected people’s needs and answer them with the
suitable instructions and guidelines by using question-answering techniques.
These techniques are based on natural language processing techniques and
neural networks to extract the needs of those who have been impacted and
respond appropriately. The proposed approach provide appropriate guidance
with a precision of 0.81, a recall of 0.76 and an f-score of 0.78. we testing

our approach using twitter data from various type of crises.
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Chapter 1

Introduction

Social networks, which have become a vital part of online users' daily life,
improve their ability to interact and communicate. The most popular social
media networks are used by a large number of people: On December 31,
2018, Facebook had 2.32 billion monthly active users, YouTube 1.3 billion,
WhatsApp 1.5 billion, Instagram 1 billion, and Twitter 259 million (MAU).
People use social networking sites not only in regular life, but also in times

of crisis and disaster, thanks to the spread of social networking sites.

Users have recently become more aware of social networking sites. The
distribution of official and basic news on it started as a way of disseminating
vital information, and many people began to use social media to track all

activities and their progress, as well as to seek help in times of emergency.

Because social networking platforms are the primary source of information
distribution, researchers are increasingly employing them to detect the
occurrence of disasters and natural crises. The term “crisis informatics™ is
often used to describe this field of study. It was introduced as “multi-
disciplinary field combining computing and social science knowledge of
disasters; its central tenet is that people use personal information and
communication technology to respond to disaster in creative ways to cope

with uncertainty.” [1].
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1.1 Motivation

During crises, the use of social media rises as people attempt to contact
family and friends and inquire about their wellbeing. As a result, many
people begin to share knowledge about food and shelter, as well as all of the
available assistance, and people begin to connect in order to assist. People's
use of social media increased during the outbreak of crises because most
conventional communication systems, such as mobile networks, are cut off
in many violent crises such as earthquakes or floods. As a result, several
organizations have begun to concentrate on the assistance that is needed

through social media and how to respond to the demand [32].

During a disaster, humanitarian organizations need various details about the
situation that are classified as different categories or event types, such as

"reports of wounded, stranded, or deceased persons,” "urgent needs of
victims," and “infrastructure damage reports,” to prepare relief operations.
The affected people use microblogging platforms like Twitter to spread this
knowledge. As a result, In this time-sensitive situation, social networking
can be helpful, but analyzing and extracting valuable information from vast

volumes of crisis-related data available on social media can be difficult [31]
1.2 Problem Statement

The method of leveraging text data to find focused events using natural
language processing and machine learning techniques is termed as the event
detection method from social media. In the event of a crisis, the event

detection process strives to identify the type of crisis, the present condition




