

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Computer & Information Science
Computer Science Department

Developing Environment Tools for Collaborative Ontology Evolution

A THESIS

Submitted in partial fulfillment of the requirement of the degree of Doctor of Philosophy in Computer Science.

Faculty of Computer and Information Sciences

Computer Science Department

Ain Shams University

BY

Wa'el Mohsen Mahmoud

M.SC. of Computer Science, Faculty of Computer and Information Sciences, Mansoura University.

Supervisors

Prof. Mostafa Mahmoud Aref	Prof. Zaky Taha Fayed	Prof. Khaled AbdElhamid ElBahnasy
Professor of Computer Science	Professor of Computer	Professor of Information System
Faculty of Computer & Information	Science	Faculty of Computer & Information Science
Science	Faculty of Computer & Information Science	Ain Shams University
Ain Shams University	Ain Shams University	

Abstract

In an era where data is considered the new oil, the lack of meaning and well-defined data structure will lead to interoperability and usability problems. Ontologies are a representation paradigm to capture and represent the knowledge of a universe of discourse and structure it in a machine-comprehensible format. However, developing ontologies can be a time-consuming, expensive process and requires a significant investment, which is challenging to make by a single person or organization. An effective approach to tackling this problem is building ontologies collaboratively where all interested stakeholders are involved. It includes identifying the main terms and concepts by finding a consensus among stakeholders while defining a shared terminology and formalizing it for the intended domain.

The process of jointly building ontologies in distributed environments, which we refer to as collaborative ontology development, aims to accomplish shared objectives and extensive coordination of activities. Ontologies are instrumental in this process by providing formal specifications of shared semantics. In this "complex" and dynamic setting, a collaborative change process model requires more powerful engineering, argumentation, and negotiation methodologies.

In fact, the main challenge for stakeholders is to work collaboratively on a shared objective constructively and efficiently while avoiding misunderstandings, uncertainty, and ambiguity. The involved stakeholders, which may be geographically distributed, should easily express and integrate their diverse views and ideas without risking losing the original intention. Researchers have presented methodologies and platforms to allow ontology construction in various scenarios. However, there is still little understanding of and support for the evolutionary aspects of ontologies. This is particularly crucial in distributed and collaborative settings such as the Semantic Web, where ontologies naturally co-evolve with their communities of use.

Software Engineering offers many techniques and tools for teams' collaboration, teams' management, feedback management, versioning, merging, and evolving software artifacts. Many of these techniques can be reused in an ontology engineering setting. Scrum/Nexus/Spotify are Frameworks that enable iterative and incremental product development. This thesis leverages these frameworks and maps them to the collaborative, inter-organizational domain ontology building and evolution. Besides, we adopted software measurement criteria as a candidate evaluation framework for ontology quality assessment.

Another challenge exists as to how humans can see, imagine and understand the knowledge captured in different domains. The knowledge experts and teams need to analyze the quality of ontologies generated in collaborative environments quickly. They must have tools that provide

i

them with a set of metrics and charts that let them know which parts of the ontology have problems, how to enhance some other parts, the complexity and memory consumption if we wish to traverse this ontology with the inference engine and so on. To overcome this severe problem, we adopted a set of software insights and architectural analysis techniques that significantly impact ontology building, evolution, evaluation, and review process. We visualized all the calculations of the ontology evaluation metrics described in the previous point using many interactive tools to instantly assimilate and understand a broad set of ontologies properties, problems and proposed enhancements.

Still, however, the Semantic Web is an incomplete dream to build domain ontologies on a broad scale of worldwide teams, agents, research centers and organizations. However, a homogeneous revolutionary platform as a network of Blockchains could be the solution to this. Our thesis proposed a new model to build or evolve the ontologies via worldwide consensus through the blockchain network. However, using a blockchain alone is not enough. The exact Blockchain chosen, the consensus mechanisms used, and the architecture of the voting (consensus) platform are all critical design decisions that impact system capabilities. Our thesis described architectural concerns for robust, upgradable, multi-user smart contracts used by WOL to fulfill the collaboration socio-technical requirements and all the required features to accomplish a true collaborative ontology evolution process.

Yet, there are several criteria to validate or evaluate an ontology. To do that, and as a pioneering thinking model in this research, we let each node apply its automatic or semi-automatic way of validation on the transaction. If we think about this, if each research center, company, or even an individual one, has a validation mechanism, all of these nodes will be challenged on a global scope to prove the robustness and efficiency of their automatic validation and evaluation mechanisms. We called this phenomenon "*Survival of the Fittest*." According to the Blockchain consensus algorithm(s), that transaction must be validated by 51% of the nodes or validated by quorums at the next nomination to be considered a valid transaction. Once a node gets a consensus on the transaction, the algorithm will reward this node with some reputation wealth credit. This will steer the research effort to enhance automatic or semi-automatic ontology validation and evaluation mechanisms. In addition, since we are rewarding the nodes or quorums by credit, the most powerful and fittest validation and evaluation techniques will survive for a longer time and will be got famous after a while.

Keywords: Ontology Engineering, Ontology Evolution, Cooperative, Inter-Organizational, Collaboration, Scrum, Nexus, Spotify, Agile, Metrics, KPIs, Visualizations, Blockchain, Platform, Consensus, Automatic Validation and Evaluation, Nodes, Transaction, Ledger.

Acknowledgments

Praise be to *Allah* for his blessing and gratitude. I offer my sincere gratitude to several individuals. Firstly, my sincere gratitude to my supervisor *Full Prof. Mostafa Aref*, Head of the Department of Computer Science, for his valuable guidance. Secondly, my supervisor *Prof. Khaled Elbahnacy* who has supported me throughout my research work with his knowledge and patience. Without both encouragement, motivation, and support, this dissertation would not have been completed. One could not wish for a more kind, accessible, and friendlier supervisor than them.

Much gratitude to all examiners and my supervisor *Prof. Zaky Taha*, for their essential and valuable discussions during the defence of my thesis. The current and former faculty team members; for their valuable efforts, support, and kindness.

Last but not least, my family. To Mum & Dad, to My wife Dad and Mom, words are not enough to express my gratitude for all your encouragement, patience, and wisdom all these years that have guided me to achieve the best possible. Thanks, Dad and My wife Dad for your wisdom. Thanks, Mum and my wife Mom, for that irreplaceable warmth.

My Wife, for all her patience, encouragement, unique smile, and love. She has always been a wonderful friend and extended her wholehearted support, especially during my Ph.D. studies, which I could not have completed without her.

List of Publications

Published Work

- 1. W. Mohsen, M. Aref and K. ElBahnasy, "Software metrics for cooperative scrum based ontology analysis," 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA), London, 2017, pp. 60-70. DOI: 10.1109/ICKEA.2017.8169903
- Wa'el Mohsen, Mostafa Aref, and Khaled ElBahnasy. 2020. Blockchain as a Platform for Collaborative Ontology Evolution. In Proceedings of the 2020 The 6th International Conference on Frontiers of Educational Technologies (ICFET 2020). Association for Computing Machinery, New York, NY, USA, 183–190. DOI:https://doi.org/10.1145/3404709.3404769
- Wa'el Mohsen, Mostafa Aref, and Khaled ElBahnasy. 2020. Scaled Scrum Framework for Cooperative Domain Ontology Evolution. In Proceedings of the 2020 The 6th International Conference on Frontiers of Educational Technologies (ICFET 2020). Association for Computing Machinery, New York, NY, USA, 135–143. DOI:https://doi.org/10.1145/3404709.3404770
- 4. Wa'el Mohsen, Mostafa Aref, and Khaled ElBahnasy. 2020. Cooperative Domain Ontology Reduction Based on Power Sets. In Proceedings of the 2020 The 6th International Conference on Frontiers of Educational Technologies (ICFET 2020). Association for Computing Machinery, New York, NY, USA, 196–203. DOI:https://doi.org/10.1145/3404709.3404771.
- 5. Wa'el Mohsen, Mostafa Aref, and Khaled ElBahnasy. "Cooperative Domain Ontology Reduction Based on Rough Sets.", International Journal of Computer Science and Mobile Computing, Vol.9 Issue.5, May- 2020, pg. 163-174 IJCSMC.
- 6. Research <u>Presentation</u>: "The Scrum Framework for Cooperative Ontology Evolution" at The Thirteenth International Conference on Technology, Knowledge and Society University of Toronto, Toronto, Canada 26-28 May 2017. Presenting Author: W. Mohsen.
 - URL: https://ubi-learn.com/assets/downloads/T17-Q17FinalProgram.pdf

- 7. Research <u>Presentation</u>: "Software metrics for cooperative scrum based ontology analysis" at The International Conference on Knowledge Engineering and Applications (ICKEA), London, 2017. Presenting Author: W. Mohsen.
 - http://toc.proceedings.com/37331webtoc.pdf

Under Review Work

- 1. W. Mohsen, M. Aref and K. ElBahnasy, "Worldwide Ontology Ledger (WOL) based Stellar Consensus Protocol," in IEEE Transactions on Knowledge and Data Engineering.
 - https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=69
- 2. W. Mohsen, M. Aref and K. ElBahnasy, "Worldwide Ontology Ledger (WOL) based hybrid Consensus Protocols," in IEEE Transactions on Knowledge and Data Engineering.
 - https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=69

Contents

Contents

Abstract		i
Acknowled	lgments	iii
List of Publ	lications	iv
Publishe	ed Work	iv
Under R	eview Work	v
Contents		vi
List of Abb	reviations	ix
List of Figu	res	xiii
List of Tabl	les	xvii
1 Introd	duction	2
1.1	Definitions	4
1.2 F	Problem Statement	4
1.3 N	Motivation	6
1.4 A	Aims and Objectives	7
1.5	Challenges	8
1.6	Contributions	10
1.7 T	Thesis Outline	11
2 Backg	round and Literature Review	12
2.1	Ontologies	12
2.1.1		
2.1.2	Ontology Evolution	13
2.1.3	Collaborative Ontology Engineering	
2.1.4	Socio-Technical Requirements	15
2.2 A	Agile based Scrum Framework	15
2.2.1	Nexus in a Nutshell	17
2.2.2	Spotify in a Nutshell	17
2.2.3	Scrum Evaluation Metrics	18
	Ontology Evaluation Metrics	
2.3	Ontology Management Tools	26
2.3.1	Evolution Tools	26
2.3.2	Visualization Tools	27
2.3.3	Automated Reasoners	29
2.3.4	Application Lifecycle Management Tools	30
2.3.5	Visualization Techniques	31
2.3.6	Interactive Visualization Tools	34
24 F	Blockchain Platform	35

Contents

	2.4.1	Blockchain Features	36
	2.4.2	Blockchain Platform Architecture	37
	2.4.3	Blockchain Nodes	38
	2.4.4	Blockchain Coordination Protocols	38
	2.4.5	Block Mining	39
	2.4.6	Smart Contract Structural Patterns	40
	2.5 Li	terature Review	41
	2.5.1	Workflow-dependent Evolution Frameworks	41
	2.5.2	Software Engineering-based Collaborative Frameworks	51
	2.5.3	Consensus Immutability and Failure Tolerance	59
	2.5.4	Blockchain-based E-Voting Systems	63
	2.6 St	ummary	64
3	Moder	n Ontology Evolution Models Design	66
	3.1 A	gile-Based Ontology Evolution	66
	3.1.1	Significant Design Decisions	68
	3.1.2	System Design	69
	3.1.3	OTBASS Framework Design	72
	3.1.4	OTBASS Framework Workflow	76
	3.1.5	OTBASS Tools	83
	3.1.6	OTBASS Process Evaluation Metrics	85
	3.1.7	OTBASS Ontology Evaluation Metrics	86
	3.1.8	Sustainable Visualizations	87
	3.2 W	orldwide Ontology Ledger (WOL) via Blockchain Platform	90
	3.2.1	Mapping Process to Cooperative Ontology Evolution	90
	3.2.2	WOL Blockchain Platform Drivers	92
	3.2.3	WOL Architecture Overview	92
	3.2.4	WOL Architecture and Design Decisions	95
	3.2.5	WOL Flow of Process	97
	3.2.6	WOL Consensus Techniques	98
	3.2.7	WOL (PoET- PoVR) Consensus Technique	99
	3.2.8	WOL Stellar Consensus Technique	. 100
	3.2.9	Ontology Evaluation and Validation Techniques	. 100
	3.2.10	Survival of the Fittest	. 101
	3.3 St	ımmary	. 101
4	Ontolo	gy Evolution Models Implementation	. 103
	4.1 A	gile-Based Ontology Evolution	. 103
	4.1.1	System Implementation	. 103
	4.1.2	Tools and Technologies	. 104

Contents

	4.1.3	B Visualization Design	105
	4.1.4	Visualizing GKSB Design	114
	4.1.5	Service Component Architecture	118
	4.1.6	System Components Visualizations	124
	4.1.7	OTBASS Process Evaluations	127
	4.1.8	OTBASS Ontology Evaluation	138
	4.2	Worldwide Ontology Ledger (WOL) Implementation	159
	4.2.2	Indexing and Externally Accessing Data	159
	4.2.2	Splitting Up Contracts	160
	4.2.3	B Upgrades and Trade-offs	162
	4.3	Summary	164
5	Con	clusion and Future Work	167
	5.1	Main Thesis Findings	167
	5.1.2	The working method	167
	5.1.2	Prerequisites to apply	169
	5.1.3	B Experimental results and efficiency	169
	5.2	Main Thesis Contributions	169
	5.3	Final Words	171
	5.4	Future Work	172
Α	ppendix	A: Definitions	173
Α	ppendix	B: Ontology Row Data Sample	175
Α	ppendix	C: Code Samples	182
Bi	ibliograi	phy	199

List of Abbreviations

Acronym	Full Definition
ADIT-LN	Average Depth of Inheritance Tree of Leaf Nodes
AFRC	Fanout Of Root Class
Al	Artificial Intelligence
AKA	As Known As
ALM	Application Lifecycle Management
AR	Attribute Richness
ASCM	Architectural Software Component Model
AVAI	Average Value of Axiom Inconsistencies
BFT	Byzantine Fault-Tolerant
BPEL	Business Process Execution Language
СВ	Continuously Building
СВО	Coupling Between Object Classes
CD	Continuous Delivery
CDL	Change Definition Language
CI	Continuous Integration
CID	Class in Degree
COD	Class Out-Degree
СОН	Cohesion. No. Of Separate Connected Components in The Instances
Connectivity	No. Of Relationships Between Instances
CR	Class Richness
CVA	Close Vocabulary Assumption
CyclC	Cyclomatic Complexity
DApp	Decentralized Application
DAO	Decentralized Autonomous Organization
DAS	Data Access Service
DaSM	Dependency and Structure Modeling
DCP	Distributed Consensus Protocol
DILIGENT	Distributed, Loosely controlled and evolvinG Engineering processes of oNTologies
DIT	Depth of Inheritance
DL	Description Logic
DSM	Design Structure Matrix
DTO	Data Transfer Object

DTs	Decision Table
EC	Evolutionary Computation
EOG	Entropy of Graph
ESB	Enterprise Service Bus
FBA	Federated Byzantine Agreement
FL	Fuzzy Logic
GEA	Governance Enterprise Architecture
GKSB	Government Knowledge Service Bus
HIT	Inheritance Tree
HTML	Hyper Text Markup Language
НТТР	HyperText Transfer Protocol
IBIS	Issues as elements of information systems
IDE	Integrated Development Environment
Imp	Importance
100	Inter-Organizational Ontology
IRC	Inheritance Richness
IRS	Inheritance Richness of The Schema
IS	Information System
ITF	Identity Trust Fabric
JSON	JavaScript Object Notation
KPI	Key Performance Indicators
LCO	Lower Common Ontology
LCOM	Lack of Cohesion of Methods
MoJ	Ministry of Justice
MoL	Ministry of Labor
NEC	Number of External Classes
NIC	National Information Center
NMIS	No. Of Minimal Inconsistent Subsets
Noc	No. Of Classes
NoF	Number of Fanout
NoL	No. Of Leaf Classes
NoP	No. Of Properties
NoOP	No. Of Ontology Partitions
NoRC	No. Of Root Classes
NOR	Number of Roots
OAF	Ontology Abstraction Framework

OE	Ontology Evolution
OLM	Ontology Lifecycle Management
00	Organizational Ontology
OTBASS	Ontology Technology-Based Agile Scaled Scrum
OVA	Open Vocabulary Assumption
OVN	Open Vote Network
OWL	Web Ontology Language
PBFT	Practical Byzantine Fault Tolerance
PoA	Proof-of-Authority
РоВ	Proof-of-Burn
PoET	Proof-Of-Elapsed-Time
PoS	Proof-of-Stake
PoVR	Proof-Of-Validation-Reputation
PoW	Proof-of-Work
PR	Probabilistic Reasoning
PSM	Problem-Solving Matrix
P2P	Peer-To-Peer Network
QLDB	Quantum Ledger Database
R2ML	REWERSE Rule Markup Language
RDF	Resource Description Framework
REC	Reference to External Classes
RFC	Response to Class
RFU	Rule Finding Uniqueness
RIF	Rule Interchange Format
RKB	Refined Knowledge Base
RR	Relationship Richness
RST	Rough Set Theory
SC	Sum of The Number of Subclasses
SCA	Service Component Architecture
SCC	Separate Connected Components
SCP	Stellar Consensus Protocol
SDO	Service Data Object
SOV	Size of Vocabulary
SWRL	Semantic Web Rule Language
TFS	Team Foundation Server
UCO	Upper Common Ontology