

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Superior Capsular Reconstruction for Massive Irreparable Cuff Tears: A Systematic Review for Clinical & Functional & Radiological Outcomes

A Systematic Review

For Partial Fulfillment of Master Degree In Orthopedic Surgery

By

Andrew Magdy Youssef

MB BCh, Faculty of Medicine Ain Shams University

Under supervisor of

Prof. Dr. Ahmed El Saeed

Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

Dr. Ashraf ElSeddawy

Lecturer of Orthopedic Surgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed El Saeed**, Professor of Orthopedic Surgery - Faculty of Medicine-Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ashraf & & Seddawy**, Lecturer of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Andrew Magdy Youssel

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Graphs	v
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	87
Results	92
Discussion	112
Summary	
Conclusion	127
References	128
Arabic Summary	

List of Tables

Table No.	Title	Page 1	Vo.
Table (1):	Dimensions of posterosuperior insertions		10
Table (2):	Hamada classification		44
Table (3):	Study characteristics		92
Table (4):	The surgical procedure		93
Table (5):	Comparison between pre and postope VAS score		96
Table (6):	Comparison between pre postoperative ASES score		98
Table (7):	Comparison between pre and postope forward extension range		100
Table (8):	Comparison between pre and postope forward external rotation		102
Table (9):	Comparison between pre and postope internal rotation		104
Table (10):	Comparison between pre and postope acromiohumeral distance		106
Table (11):	Percentage of graft failure		108
Table (12):	Percentage of complication		110
Table (13):	Percentage of reoperation		111

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of shoulder joint	5
Figure (2):	a) the angle of inclination b) arretroversion of humeral head	ngle of
Figure (3):	A) pear shaped glenoid with a wider B) S and glenoid version. C) Glenoid fossa's retr D) Glenoid fossa's superior tilt	oversion
Figure (4):	Rotator cuff muscles	8
Figure (5):	Dissection into the central portion supraspinatus tendon revealing its footprint	broad
Figure (6):	Posterior view of a cadaver sinfraspinatus and teres minor	_
Figure (7):	A) The supraspinatus is shown to ins the superior facet and the infraspinatus infraspinatus occupies about half superior and all of the middle facet greater tuberosity	. B) The of the of the
Figure (8):	Nerve supply of rotator cuff muscles	
Figure (9):	Balanced force couples in corona transverse planes	al and
Figure (10):	Soft tissue stabilizers including the labrum, glenohumeral ligaments, a glenohumeral joint capsule	nd the
Figure (11):	Glenoid labrum and glenohumeral ligam	
Figure (12):	Coracohumeral ligament	17
Figure (13):	A) intact superior capsule B)detcahed scapsule	_
Figure (14):	a) superior view b) posterior view of cable complex	
Figure (15):	A) rotator cuff tear can be modeled suspension bridge. (B) The free corresponds to the cable, and the anter posterior attachments of the tear corres the supports at each end of the cable's sp	margin rior and spond to

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	A) The superior stability of the glenoh joint with an intact superior caps Significant superior translation of the h	sule B) numeral
	head after the superior capsule is resected	
Figure (17):	Arthroscopic view of the rotator interposterior portal	
Figure (18):	Acromial morphologies	25
Figure (19):	Os-acromiale	26
Figure (20):	Collin classification	29
Figure (21):	Topography of tears in sagittal planes	30
Figure (22):	Rotator cuff tear pattern	
Figure (23):	External lag test	36
Figure (24):	Hornblower test	
Figure (25):	Lift off test.	38
Figure (26):	Belly press test	38
Figure (27):	Bear hug test	39
Figure (28):	American shoulder elbow surgeon score	40
Figure (29):	Visual analogue scale	42
Figure (30):	Normal AHD measured as the smallest of from the inferior surface of the acromion superior aspect of the humerus	n to the
Figure (31):	Hamada classification	
Figure (32):	Patte classification	46
Figure (33):	Goutallier classification	47
Figure (34):	Full thickness rotator cuff tear	48
Figure (35):	Partial repair of MIRCT by margin conv sutures	_
Figure (36):	Subacromial balloon spacer arthroplasty	·53
Figure (37):	LD tendon transfer	55
Figure (38):	Pectoralis major tendon transfer	56
Figure (39):	Lower trapezius transfer	57
Figure (40):	Patch augmentation rotator cuff repair	59

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (41):	Reversed total shoulder arthroplasty	60
Figure (42):	Superior capsular reconstruction	63
Figure (43):	A) Lateral decubitus B) Beach -chair	64
Figure (44):	The viewing portals	65
Figure (45):	Double interval slide technique repai	r of a
	massive, contracted, immobile crescent	
	cuff tear.	
Figure (46):	Load sharing rip stop construct for repair	
Figure (47):	A) glenoid preparation. B) greater tub	-
E. (40)	preparation	
Figure (48):	Trajectory of anchors by 3 spinal needles.	
Figure (49):	Medial glenoid anchoring with monk hood	
Figure (50):	Deltopectoral approach	
Figure (51):	Medial row of suture anchors are placed humeral head.	
Figure (52):	Fascia lata harvesting	
Figure (53):	Measurement of graft size	
Figure (54):	Dermal allograft	
Figure (55):	The flexible cannula	
Figure (56):	Introduction of graft through cannula	
Figure (57):	A) double pulley technique. B) Zipline p	
8 . /	instrument	
Figure (58):	A medial double-pulley construct	78
Figure (59):	Side to side posterior suture b	etween
	infraspinatus and graft	79
Figure (60):	Additional layer of (A) polypropylene	
	being fashioned inside (B) the folded fasc:	ia lata82
Figure (61):	PRISMA (Preferred Reporting Item	
	Systematic Reviews and Meta-analysis diagram for study selection	

List of Graphs

Graph No.	Title	Page No.
Graph (1): Pre an	d postoperative VAS scor	re97
Graph (2): Pre an	d postoperative ASES sco	ore99
Graph (3): Pre an	d postoperative forward	extension 101
Graph (4): Pre an	d postoperative external	rotation 103
Graph (5): Pre an	d postoperative internal	rotation 105
Graph (6): pre an	d postoperative AHD	107
Graph (7): Graft i	ntegrity	109
Graph (8): Compl	ication rate	110
Graph (9): Reoper	ration rate	111

List of Abbreviations

Abb.	Full term
<i>AHD</i>	Acromiohumeral distance
ASES	American Shoulder and Elbow Surgeons
CHL	Coracohumeral ligament
<i>GFDI</i>	Global fatty degeneration index
HDA	Human dermal allograft
<i>IGHL</i>	Inferior glenohumeral ligament
<i>IRCT</i>	Irreparable rotator cuff tears
IS	Infraspinatus
<i>LD</i>	Latissimus dorsi
<i>MCID</i>	Minimally Clinically Important Difference
<i>MRCT</i>	Assive rot ator cuff muscle tears
RI	Rotator interval
<i>ROC</i>	Receiver operating characteristics
SCR	Superior capsular reconstruction
SS	Supraspinatus
Sub	Subscapular is
VAS	Visual analogue score

Introduction

assive rotator cuff muscle tears (MRCT) are defined as a full thickness tear of at least two tendons or a tear measuring greater than five centimeters in the coronal plane¹. They are estimated to comprise approximately 20% of all rotator cuff tears and 80% of recurrent tears².

In rotator cuff surgery, the term "irreparable" has had an inconsistent definition during the past few decades. In the past, they used the term "irreparable" to mean "operatively irreparable"; indicating that an operative repair had been attempted and no or only partial repair was possible³. Before the year 2000, a rotator cuff that was either (A) predicted to be irreparable based on preoperative characteristics or (B) predicted to have a poor outcome from rotator cuff surgery; regardless of the possibility of achieving actual intraoperative repair⁴. Many surgeons found that many seemingly irreparable tears turn out to be easily reparable with the right combination of reduction and/ or mobilization techniques. So, the surgeons should avoid the term "irreparable" unless this determination has been made intraoperatively⁵.

The development of tendon retraction with inelasticity, muscle atrophy and fatty infiltration with MRCT make the repair very challenging. These findings are detected by MRI

and X-rays. The findings are evaluated by the grading system of Goutallier et al and Hamada classification.⁶

Various surgical treatments have been developed, including debridement and subacromial decompressiosn^{7,8,9}, partial repair^{7,8,9} transposition of the subscapularis tendon^{7,8,9} transplantation of the teres major muscle^{7,8,9}, supraspinatus muscle advancement^{7,8,9}, deltoid flap reconstruction^{7,8,9}, latissimus dorsi transfer^{7,8,9}, pectoralis major transfer^{7,8,9}, grafting to the torn tendon^{7,8,9} and reverse total shoulder arthroplasty^{7,8,9}

Currently there appears to be no consensus regarding the best option for treating the MIRCT¹⁰.

For elderly patients with MIRCT, reverse shoulder arthroplasty is a reliable surgical option for improving active shoulder elevation above shoulder level with pain relief; and accordingly improving daily function and return to low-intensity activities¹¹.

However, reverse shoulder arthroplasty is thought, by some surgeons, to be suboptimal for young and/or active patient due to the high complication rates that have been reported¹².

A new surgical technique "superior capsular reconstruction" (SCR) has been developed; which is based on the idea that patients with MIRCT have a defect of the superior

capsule⁷. This results in loss of superior stability of glenohumeral joint and manifests as pain from subacromial impingement, muscle weakness in the shoulder joint and limitation of arm elevation^{13,14}. The superior capsular reconstruction provides a passive biological constraint to superior humeral head.

In this technique, either "a fascia lata autograft" 15 or "dermal allograft16" are used to be attached medially to the glenoid superior tubercle and laterally to the greater tuberosity. Graft healing is the key to improve shoulder function and relieve pain after SCR^{15,16}.