

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Comparative Study of the Prognosis of Patients with Septic Shock Related to Ventilator Associated Pneumonia Using Variance of Arterial and Venous CO₂ versus Serum Lactate

Thesis

Submitted to the Faculty of Medicine Ain Shams University In partial fulfilment of the Requirements of the degree of Master In Intensive Care

By

Moustafa Mohammed Fangary Ahmed

M.B.B.Ch, Alexandria University, 2013

Supervisor

Prof. Dr. Hatem Said Abd El-Hameed

Professor Anesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Dr. Niven Gerges Fahmy

Assistant Professor Anesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Dr. Ahmed Mounir Ahmed

Lecturer Anesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way

I would like also to express my deep gratitude to Prof. Dr. Hatem Said Abd El-Hameed Professor Anaesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University who had made a great effort with me in this thesis. for his precious guidance, wise instructions, meticulous supervision, valuable experience and time, endless cooperation and true concern to accomplish this work in the best possible image. for the time he gave to me, his support and sincere help.

It is a great honour to express my deep gratitude and cordial appreciation to **Dr. Niven Gerges Fahmy** Assistant Professor Anaesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University who gave me much of his effort, experience and close supervision throughout the work. She provided me continuous encouragement and support. She generous assistance and meticulous guidance had a pivotal role in the completion of this study. For providing me the experience, cooperation and close supervision throughout the work. She provided me continuous encouragement and support.

I would like to express my deep gratitude to **Dr.Ahmed Mounir Ahmed** Lecturer Anaesthesiology and Intensive Care and Pain Management Faculty of Medicine-Ain Shams University for his great encouragement, constant support. Without his continuous help this work would never have been accomplished. His patience and willingness to provide continuous guidance have been instrumental in bringing the study to completion.

Last but not least I would like to express my deepest thanks to my Family for their continuous guidance and constant encouragement.

My great appreciation is extended to all those who shared either practically. or morally to accomplish this work.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	32
Results	36
Discussion	77
Conclusion	85
Recommendation	86
Summary	87
References	91
Arabic Summary	

List of Abbreviations

Abb.	Full term
ARDS	. Acute respiratory distress syndrome
CO2	. Carbon dioxide
CPIS score	. Clinical pulmonary infection score
CRP	. C-reactive protein
CtCO2	. Total concentration of carbon dioxide
CVP	. Central venous pressure
ECDC	. European center for Disease prevention and control
EPIC	. European Prevalence of Infection in Intensive
	Care
ESBL-PE	. Extended spectrum β-lactamase-producing
	Enterobacteriaceae
FDA	. Food and Drug Administration
FIO2	. Fraction of inspired oxygen
	. Hospital acquired pneumonia
	. Intensive care unit
IV	
	. Journal of the American Medical Association
LPS-LBP	. Lipopolysaccharide –lipopolysaccharide-binding
	protein
	. Mean arterial pressure
	. Membrane-bound, CD14
	. Multi-drug resistance
	. Methicillin-resistant Staphylococcus aureus
OR	
	. Partial pressure of carbon dioxide
	. Arterial partial pressure of oxygen
PCT	
sCD14	
	. Systemic inflammatory response syndrome
	. Sequential organ failure assessment
VAP	. Ventilator associated pneumonia

List of Tables

Table No.	Title	Page No.
Table (1):	CPIS score	
Table (2):	Comparison survival and regarding age and gender	· ·
Table (3):	Comparison between survival and groups regarding hemodyna admission	mics on
Table (4):	Comparison between survival and groups regarding Co-morbidities	v
Table (5):	Comparison between survival and groups regarding original diagnosi	•
Table (6):	Comparison between survival and groups regarding CPIS score	· ·
Table (7):	Comparison between survival and groups regarding Noradrenaline day every 12 hours "µg/kg"	dose per
Table (8):	Comparison between survival and groups regarding mean noradre over the period of follow up "µg/kg"	enaline all
Table (9):	Comparison between survival and groups regarding serum lactate every 12 hours " mmol/L	measured
Table (10):	Comparison between mortality are groups regarding mean lactate at period of follow up " mmol/L"	ll over the
Table (11):	Comparison between mortality are groups regarding PCO2 Variance every 12 hours "mmHg"	measured
Table (12):	Comparison between mortality are groups regarding mean PCO ₂ all period of follow up "mmHg"	nd survival l over the

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Comparison between mortality groups regarding heart rate me 12 hours "beat/min"	easured every
Table (14):	Comparison between mortality groups regarding mean heart the period of follow up "beat/min	rate all over
Table (15):	Comparison between s summertality groups regarding measured every 12 hours "mm F	mean BP
Table (16):	Comparison between survival a groups regarding mean blood over the period of follow up " mn	pressure all
Table (17):	Comparison between survival a groups regarding urine output every 12 hours "mL/kg"	ut measured
Table (18):	Comparison between survival a groups regarding mean urine outhe period of follow up " mL/kg"	itput all over
Table (19):	Comparison between survival a groups regarding temperature me 12 hours "Celsius"	and mortality easured every
Table (20):	Comparison between survival a groups regarding mean tempera the period of follow up " Celsius	ature all over
Table (21):	Comparison between survival a groups regarding prognosis	and mortality
Table (22):	Sensitivity, specificity and different studied variables in final outcome.	accuracy of predict the
Table (23):	Correlation between different variables on admission	ent studied

List of Figures

Fig. No.	Title Page No.
Fig. (1):	Comparison between survival and mortality groups regarding age and gender37
Fig. (2):	Comparison between survival and mortality groups regarding hemodynamics on admission39
Fig. (3):	Comparison between survival and mortality groups regarding Co-morbidities40
Fig. (4):	Comparison survival and mortality groups regarding Original Diagnosis41
Fig. (5):	Comparison between survival and mortality groups regarding CPIS score
Fig. (6):	Comparison between survival and mortality groups regarding Noradrenaline dose per day every 12 hours "µg/kg"
Fig. (7):	Comparison between mortality and survival groups regarding serum lactate measured every 12 hours " mmol/L "
Fig. (8):	Comparison between mortality and survival groups regarding PCO2 Variance 1easured every 12 hours " mmHg "
Fig. (9):	Comparison between mortality and survival groups regarding heart rate measured every 12 hours "beat/min"
Fig. (10):	Comparison between survival and mortality groups regarding mean BP measured every 12 hours "mm Hg"
Fig. (11):	Comparison between survival and mortality groups regarding urine output measured every 12 hours "mL/kg"
Fig. (12):	Comparison between survival and mortality groups regarding temperature measured every 12 hours "Celsius"

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (13):	Comparison between survive and regarding prognosis	-
Fig. (14):	Sensitivity, specificity and accuracy studied variables in predict the fina	cy of different

Introduction

Ventilator associated pneumonia "VAP" is a type of hospital-acquired pneumonia that occurs more than 48 hours after endotracheal intubation. This can be further classified into early onset (within the first 96 hours of mechanical ventilation) and late onset (more than 96 hours after the initiation of mechanical ventilation), which is more commonly attributable to multidrug-resistant pathogens (**Rawal et al., 2018**).

Approximately one-third of nosocomial pneumonia cases, with the majority being VAP, are acquired in the intensive care units. United states of America epidemiological studies report an incidence of VAP of 2–16 episodes per 1000 ventilator-days estimated the risk of VAP to be 3% per day during the first 5 days on mechanical ventilation, 2% per day from day 5 to 10 and 1% per day for the remaining days (**Torres et al., 2017**).

Pneumonia is usually mild if it occurs in the early period of invasive ventilation and the organisms "mostly Gram-positive" are most responsive to the antibiotics administered, whereas after a few days (late onset), pneumonia is more severe in its course, with fewer organisms "mostly Gram-negative" responding to antibiotics and increased rate of morbidity and mortality among those with late onset infection (El-Kolaly et al., 2019).

The crude mortality of nosocomial pneumonia may be as high as 70%. Several reports have estimated that third to half of all VAP-related deaths are due to sepsis, with a higher mortality rate in cases caused by Pseudomonas aeruginosa and Acinetobacter spp (Micek et al., 2015).

Sepsis is now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock is subset of sepsis with circulatory and cellular/metabolic dysfunction associated with a higher risk of mortality (Rhodes et al., 2017).

Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation (Shankar-Har et al., 2016).

Lactate is important source of energy, particularly during starvation. Lactate also contributes to acidic environment by converting to lactic acid. Next, lactate is converted to bicarbonate and becomes a main source of alkalemia under normal conditions. In tissue hypoxia, lactate is overproduced by increased anaerobic glycolysis. (Lee et al., 2016). The clinical prognostic role of serum lactate was suggested in 1964 by Broder and Weil as a risk prediction factor of VAP (Mozafari et al., 2017).

An increased venous to arterial partial pressure carbon dioxide "PCO2 variance", is a common finding in sepsis. Elevated tissue PCO2 could reflect the persistence of anaerobic metabolism as result of bicarbonate buffering of protons derived from fixed acids, like lactate. In this case, it could represent tissue dysoxia. Alternatively, an increase in tissue PCO2 could denote hypoperfusion and diminished removal of the CO2 produced during the oxidation of pyruvate (Ospina-Tascón et al., 2013).

PCO2 variance or gap is an important hemodynamic variable in the management of sepsis-induced circulatory failure and can be a marker of the adequacy of cardiac output in severe sepsis (Bitar et al., 2020).

Aim of the Work

The aim of this study is to compare the variance between arterial and central venous carbon dioxide versus serum lactate as an early bedside prognostic factor in cases of septic shock due to ventilator associated pneumonia