

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

BIOCHEMICAL STUDIES ON NATURAL COMPONENTS AS ANTI-TOXIGENIC AGENTS

 $\mathbf{B}\mathbf{y}$

ALAA ALI KHALIL ALI OMAR

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Zagazig Univ., 2009 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

BIOCHEMICAL STUDIES ON NATURAL COMPONENTS AS ANTI-TOXIGENIC AGENTS

Ph.D Thesis In Agric. Sci. (Biochemistry)

 $\mathbf{B}\mathbf{y}$

ALAA ALI KHALIL ALI OMAR

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Zagazig Univ., 2009 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2015

APPROVAL COMMITTEE

Dr. NAGAH EL-SHAHAT ALI	
Professor of Biochemistry, Fac. Agric., Ain Shams University	
Dr. FOUAD ABDEL-REHIM AHMED	
Professor of Biochemistry, Fac. Agric., Cairo University	
Dr. SHERIF HELMY AHMED	
Professor of Biochemistry, Fac. Agric., Cairo University	
Dr. YASMIN EMAM ABDEL-MOBDY	
Associate Professor of Pesticides Toxicology, Fac. Agric., Cairo	
University	

Date: 17 / 8 / 2021

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON NATURAL COMPONENTS AS ANTI-TOXIGENIC AGENTS

Ph.D Thesis
In
Agric. Sci. (Biochemistry)

 $\mathbf{B}\mathbf{y}$

ALAA ALI KHALIL ALI OMAR

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Zagazig Univ., 2009 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2015

SUPERVISION COMMITTEE

Dr. SHERIF HELMY AHMED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. YASMIN EMAM ABDEL-MOBDY

Associate Professor of Pesticides Toxicology, Fac. Agric., Cairo University

Dr. HASSAN AHMED EL-SAYED AMRA (LATE)

Researcher Professor of Mycotoxins, Food Toxicology and Contaminants, NRC, Giza

Name of Candidate: Alaa Ali Khalil Ali Omar Degree: Ph.D

Title of Thesis: Biochemical Studies on natural components as anti-toxigenic

agents

Supervisors: Dr. Sherif Helmy Ahmed

Dr. Yasmin Emam Abdel-Mobdy

Dr. Hassan Ahmed Amra

Department: Biochemistry **Branch:** Biochemistry

Approval: / / 2021

ABSTRACT

Ziziphus spina-christi leaves (ZSC), Rhamnaceae, and Euphorbia umbellate latex (EU), Euphorbiaceae, considered being of the common potent natural. So, the aim of study was to carry out a bio-monitored investigation of extracts using *in vitro* assay.

Well-developed nanostructure incorporated with these extracts into a unique form with greater biocompatibility was investigated. The study demonstrated a combination of polysaccharide-based nanoparticles with extracts into a unique form which prepared by using two biocompatible polymers; alginate (ALG) and chitosan (CS). To investigate potential interactions between ALG/CS-NPs and the extract (ZSC/EU), physicochemical characterization was performed. The release profiles of phenolic compounds from ZSC/EU loaded ALG/CS-NPs were evaluated using quantification method.

ZSC/EU loaded ALG/CS-NPs was developed as a potent immunomodulatory natural extract with promising antimicrobial activity against multidrug resistant bacteria, antiviral activity against Coxsackie B3 virus, antioxidant activity against free radicals and oxidative stress, anti-inflammatory activity by inhibitory effect on lysosomal enzymatic activities and anti-proliferation activity against DNA oxidative damage (hepatocellular carcinoma cell line.

The results indicated that the novel agent has potent antioxidant activities and potent inhibitory effect on lysosomal enzymatic activities. Also, the novel agent had inhibitory effect; it caused cytotoxic effect by IC $_{50}$ of 14.28 and 12.66 µg/ml for hepatocellular carcinoma cell line (HepG2) and breast adenocarcinoma cell line (MCF-7), respectively.

It was concluded that the novel agent had been reported to afford protection against oxidative stress due to their significant anti-inflammatory, antioxidant, antimicrobial, antiviral and anti-proliferation activities.

Kay words: *Ziziphus spina-christi, Euphorbia umbellate* (Pax) Bruyns, phenolic, flavonoids, Polysaccharide-Based Nanoparticles, polymers, Nanoformulations, anti-inflammatory activity, anti-proliferation activity, DPPH, MTT.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my grandfather; Khalil (late), my father; Ali (late) and my mother; Naeema (late), as well as to my brothers; Ragab, Mohamed, Omar, Khalil and El-Sayed, and my sister; Haniya for their patience, help and all the supports they lovely offered along the period of my post-graduation and I can't find adequate words to express my feeling towards them, so does my supervisor Prof. Dr. Hassan Amra (late). Also, I wish to express my feeling to my friend; Mohamed (late) and other friends for encouragement.

ACKNOWLEDGEMENT

First of all, I want to thank **ALLAH** who offered me the ability to perform the work of this study and I apologize for any mistakes. My all-appreciation utmost respect to my country Egypt where I born, working, still living and learning.

I found no word by which I can express my sincers thankful, appreciation and profound deepest gratitude to Prof. Dr. Sherif Helmy Ahmed and Prof. Dr. Emam Abdel-Mobdy Abdel-Rahim, Professors of Biochemistry, Faculty of Agriculture, Cairo University, prof. Dr. Yasmin Emam Abdel-Mobdy, Associate Professor of Pesticides toxicology, Faculty of Agriculture, Cairo University and Prof. Dr. Hassan Ahmed Amra Researcher Professor of mycotoxins, food toxicology and contaminants, National Research center, for suggesting the problem, keen supervision, continued assistance and advice through the course of study and revision the manuscript of this thesis.

Grateful appreciation is also extended to all stuff members of Advanced Materials and Nanotechnology Group, National Research center, Food Toxicology and Contaminants Dept., National Research center and Biochemistry Dept., Faculty of Agriculture, Cairo University.

Finally, I am grateful to every person participated in the fulfillment of this work.

Alaa Ali Khalil Ali Omar

ABBREVIATIONS, EXPRESSIONS AND SYMBOLS

AA Antioxidant activity or ascorbic acid

ACP Acid phosphatase

ALG Alginate Amox Amoxicillin

ANOVA Analysis of variance

ANT Adenine nucleotide translocator

BHA Butylated hydroxyanisole
BHT Butylated hydroxytoluene
CC₅₀ Cytotoxic concentration 50
CNS Central nervous system

CPE Cytopathic effect CS Chitosan

CFIDS Chronic fatigue immunodeficiency syndrome

DA Degree of acetylation

DDT Dammarane-type triterpenoids

DEMC Diethylmethyl chitosan**DMEC** Dimethylethyl chitosan

DMEM Dulbecco's Modified Eagle's Medium

DMSO Dimethyl sulfoxideDNA Deoxyribonucleic Acid

DOX Doxorubicin

DPPH 2, 2-diphenyl-1-picrylhydrazyl or 1, 1-diphenyl-2- picryl- hydrazyl

DTT Dithiothreitol

EDTA Ethylene di-amine tetra acetic acid

EI Electron ionisation

ELISA Enzyme-linked immunosorbent assay

EU Euphorbia umbellate
FA Fraction of acetylation
FBS Fetal bovine serum

FRAP Ferric reducing antioxidant power **FT-IR** Fourier-transform infrared spectroscopy

G α-L-gluronic acid GAE Gallic acid equivalent

β-GAL β-galactosidase

GAE Gallic acid equivalent

GC/MS Gas Chromatography–Mass Spectrometry

GIT Gastrointestinal tract β-GLU β-glucuronidase

HBSS Hanks' Balanced Salt Solution

HP Heliobacter pyroli

HPLC High performance liquid chromatograph

HRP Horseradish Peroxidase

HRS Hydroxyl radical scavenging activityICAD Inhibitor of caspase-activated DNase

LD₅₀ Lethal dose

M β-(1-4)-D-mannuronic MDA Malondialdehyde

mETC Mitochondrial electron transport chainMIC Minimum inhibitory concentrationMMP Mitochondrial membrane potential

MPS Myofascial pain syndrome

mtROS Mitochondria ROS

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

MW Molecular weight

NADP⁺ Nicotinamide adenine dinucleotide phosphate

β-NAG N-Acetyl- β -glucosaminidase

ND Not detected

NMR Nuclear Magnetic Resonance

NO Nitric oxide

NPDDs Nanoparticulate drug delivery system

NPs Nanoparticles NRF2 Nuclear factor

OD The optical density

8-OHdG 8-hydroxy-2-deoxyguanosine

OFRs Oxygen free radicals
OS Oxidative stress
PA Pattern of acetylation

PBP The penicillin binding protein

PBS Phosphate buffer salinePEC Polyelectrolyte complex

PEO Poly ethyl oxide
PDA Potato Dextrose Agar
PM Physical mixture
PTs Pentacyclic triterpenes
PUFAs Polyunsaturated fatty acids

PVA Poly vinyl alcohol
PVP Poly vinyl pyrrolidone
QE Quercetin equivalents

RDA The Recommended Dietary Allowance

RNS Reactive nitrogen species

ROS Reactive oxygen species
RSA Radical scavenging activity

RT Retention time SBs Strand breaks

SCGE Single cell gel electrophoresis

SD Standard deviation

SEM Scanning electron microscope

SMs Secondary metabolites

SPSS Statistical package for social sciences

STPP Sodium tripolyphosphate
 TAC Total antioxidant capacity
 TAE Tannic acid equivalent
 TBA Thiobarbituric acid

TBARS Thiobarbituric acid reactive substances

TCA Trichloroacetic acid

TCID₅₀ Tissue Culture Infectious Dose

TEC Triethyl chitosan

TEM Transmission electron microscopy

TFC Total flavonoids contentTLC Thin-layer chromatographyTMC N-trimethyl chitosan chloride

TMS Tetramethylsilane

TNF- α Trumor necrosis factor alpha TNF- β Trumor necrosis factor beta

TP Total proteins

TPC Total phenolic compounds

UV Ultraviolet

VDAC Voltage-dependent anion channel

WHO World health organization

XRD X-ray diffraction ZSC Zizyphus spina-cristi

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	6
1. Oxidative stress (OS)	6
2. Free radicals	7
3. Reactive oxygen species (ROS) and Reactive Nitrogen Species (RNS)	9
4. The mitochondria and oxidative stress	16
5. Role of OFRs and ROS in cancer development	20
6. Role of OFRs and ROS in cancer treatment	23
A. Functions of OFRs and ROS in the cancer cells	23
B. Antioxidant and oxidation pathways regulate ROS generation	25
7. Anticancer	26
8. Anti-inflammatory	29
9. Natural products (Phytochemicals / Phytonutrients)	32
10. Zizyphus spina-cristi (L.) (ZSC)	41
A- Taxonomic classification of plant	41
B- Distribution of plant	41
C- Medicinal usage of plant	41
D- Chemical ingredients of plant	44
11. Euphorbia umbellate (EU)	47
A- Taxonomic classification of plant	47
B- Distribution of plant	47
C- Medicinal usage of plant	47

CONTENTS (continued)

D-	Chemical ingredients of plant
	inoparticulate drug delivery system (NPDDS) using lysaccharide based nanoparticles
A-	Chitosan (CS)
B-	Alginate (ALG)
MAT	ERIALS AND METHODS
RESU	JLTS AND DISCUSSION
1.	Preliminary phytochemical screening of <i>Ziziphus spina-christi</i> leaves (ZSC) and <i>Euphorbia umbellate</i> latex (EU) extracts
2.	Total phenolic (TPC) and total flavonoid (TFC) contents of ZSC and EU extracts
3.	Chemical profile of ZSC and EU crude extract using HPLC
4.	Structure elucidation of the isolated compounds of ZSC and EU extracts by GC/MS
5.	Structure elucidation of the isolated compounds of ZSC and EU by NMR
6.	Hydrogel crosslinking
7.	Characterization of ZSC/EU loaded ALG/CS-NPs
A-	Fourier-Transform Infrared (FT-IR) spectroscopy analysis