

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electrical Power and Machines Department

Performance Enhancement of Electrical Power Systems with High Penetration Level of Wind Energy Resources

By

Eng. Mahrous EL- Azab Abdel Maksoud Badawi

M.Sc. in Electrical Engineering, Cairo University, 2004

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering (Electrical Power and Machines Department)

Supervised by

Prof. Dr.: Hossam Eldin Abdallah Talaat

Prof. Dr.: Said Fouad Mekhamer

Assoc. Prof. Dr.: Walid Atef Omran

Cairo - (2021)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electrical Power and Machines Department

Performance Enhancement of Electrical Power Systems with High Penetration Level of Wind Energy Resources

By

Eng. Mahrous EL- Azab Abdel Maksoud Badawi

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering (Electrical Power and Machines Department)

Supervision Committee

Name and Affiliation	Signature
Prof. Dr. / Hossam Eldin Abdallah Talaat Electrical Power and Machines Department, Faculty of Engineering Ain Shams University	
Prof. Dr. / Said Fouad Mekhamer Electrical Power and Machines Department, Faculty of Engineering Ain Shams University	
Assoc. Prof. Dr. / Walid Atef Omran Faculty of Engineering & Materials Science German University in Cairo	

Date: 04/09/2021

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electrical Power and Machines Department

Performance Enhancement of Electrical Power Systems with High Penetration Level of Wind Energy Resources

By

Eng. Mahrous EL- Azab Abdel Maksoud Badawi

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering (Electrical Power and Machines Department)

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr./ Essam El-Din Abo El-Zahab Electrical Power and Machines Department, Faculty of Engineering, Cairo University	
Prof. Dr. /Abdel-aal Hassan Ismail Mantawy Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University	
Prof. Dr. / Hossam Eldin Abdallah Talaat Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University	
Prof. Dr./ Said Fouad Mekhamer Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University	

Date: 04/09/2021

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering , Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

ľ	Name: Mahrous EL-Azab Abdel Maksoud
	Signature:
	Date:

○ Contact Information

Address : 29 El-Salam St. Haram, Giza, Egypt

Mobile : (+2) 01119005373

E-Mail : mahrousazab@yahoo.com

Date:04 September 2021

Researcher Data

Name : Mahrous EL-Azab Abdel Maksoud Badawi

Date of birth : 23 May 1971

Place of birth : Zagazig, Al Sharqia, Egypt

Last academic degree : M.Sc. in Electrical Engineering

Field of specialization : Electrical power and Machines

University issued the degree : Faculty of Engineering, Cairo University

Date of issued degree : 2004

Current job : Electrical Engineer at Osman Group Company

Abstract

In recent years the limitations of fossil fuel resources and environmental pollution has created great tendency towards the use of renewable energy resources. However, the integration of high penetration levels of renewable energy resources along with the increased load demand and aging of the transmission network will push these networks to work closer to their operating limits. As a result, transmission congestion is a growing concern that could limit integration of new renewable energy projects. With large-scale wind power integration, the system operators need to exploit more flexibility in the planning and operation of the power system to maximize the utilization of existing transmission networks. This can be achieved by using costeffective transmission technologies, thereby taking full advantage of the inherent flexibility of the system. In this thesis, we focus on implementing two different approaches that can lead to increasing the penetration level of wind power while managing possible congestions in the transmission network. Moreover, we propose using the Dynamic Line Ratings (DLRs) technology that could potentially increase the capacity of existing transmission networks and avoid unrealistic congestions.

The first approach presents a probabilistic multi-objective optimization approach to obtain the optimal sizes and locations of static var compensators (SVCs) and thyristor-controlled series compensators (TCSCs) in a power transmission network with high penetration level of wind power. The objective of the problem is to maximize the system loadability while minimizing the network power losses and the installation cost of the FACTS devices. The optimization problem is solved using the multi-objective teaching-learning based optimization (MO-TLBO) algorithm to find the best locations and ratings for the FACTS devices. In this approach, the uncertainties associated with wind power generation and the correlated load

demand are considered. The uncertainties are handled using the points estimation method (2PEM+1). Moreover, the DLRs of the transmission lines are considered in this approach. Based on the simulation results, it is found that the proposed approach successfully achieves a compromise of the desired objectives, and hence, is able to manage the possible congestions in the network due to the increased penetration levels of wind power.

The second approach, investigates the possibility of changing the network topology using the Optimal Transmission Switching (OTS) strategy while considering the DLR in the congestion management. In this approach, a probabilistic multi-objective based congestion management procedure is proposed using OTS strategies considering the maximization of system reliability and minimization of the total generation cost. Additionally, the prevention of islanding is considered to ensure the feasibility of transmission switching status. The uncertainties associated with load demand and wind power are considered. The formulated optimization problem is solved using the multi-objective teacher learning based optimization (MOTLBO) algorithm. The results in this approach show that a better utilization of the transmission capacity can be achieved through network topology reconfiguration, and DLR technology and allows for higher wind power integration.

Key Words: wind energy, uncertainty, FACTS devices, optimal power flow, reliability, islanding, network topology optimization, optimal transmission switching, dynamic line rating, multi-objective optimization, MOTLBO, points estimation method.

Acknowledgment

Primarily, I thank **ALLAH** for all things He offered me, with Whom truly all things are possible. This thesis is definitely a proof of that.

It gives me immense pleasure to express my deepest sense of gratitude and sincere thanks to my highly respected and esteemed guide **Prof. Hossam Eldin Abdallah Talaat** and **Said Fouad Mohamed Mekhamer** for their guidance throughout my dissertation work, which made this task a pleasant job. It was a real pleasure to work under their guidance. Whatever we say, we cannot describe their characters, characteristics, manners, morals or their knowledge. I also thank my supervisor **Associate Prof. Walid Atef Omran**, for his supervision, helpful suggestions and assistance throughout the various research stages. He endured more than five years of guidance, continued advice to get me to the shore of safety in all my researches, and gave me a good sound push in the right direction sacrificing all his time and effort to achieve my goals. I do appreciate that and millions of thanks for him.

I extend my special sincere thanks to **my colleague Mousa EL-Robiy** for his keen interest, continued encouragement, support and his hopeful wishes for me.

I am also indebted to **my wife and all my family** who took lots of pains for progress in my life and for their sacrifices, blessings and constant prayers for my advancement.

I am very grateful to Osman Group Company, especially Eng. Ibrahim Osman, and Eng. Mahmoud Osman for give me the opportunity to complete this thesis. I would also like to thank all my friends in Osman Group Company.

Eng. Mahrous EL-Azab

September 2021

Table of Contents

Statement	IV
Researcher Data	V
Abstract	VI
Acknowledgment	VIII
Table of Contents	IX
List of Figures	XII
List of Tables	XIV
List of Abbreviations	XV
List of Symbols	XVIII
Chapter 1: Introduction	1
1.1 General	1
1.2 Wind Power Status and Challenges	2
1.2.1 Wind power generation development	2
1.2.2 Status of renewable energy in Egypt	4
1.2.3 Challenges of wind power integration	5
1.3 Motivations of Research	6
1.4 Thesis Aim and Objectives	8
1.5 Thesis Outline	9
1.6 Summary	9
Chapter 2: Literature Review	11
2.1 Introduction	11
2.2 Flexible AC Transmission System (FACTS) Devices	12
2.2.1 Modelling of the FACTS devices	14
2.2.1.1 Static Var compensator (SVC)	14
2.2.1.2 Thyristor controlled series compensator (TCSC)	14
2.3 Optimal Allocation of FACTS Devices	15
2.4 Summary	22
Chapter 3: Modelling and Analysis of Uncertain Power Systems	23
3.1 Modeling of Uncertainties	23
3.1.1 Probabilistic load demand modeling	24
3.1.2 Probabilistic wind power modeling	25
3.1.3 Probabilistic line rating modeling	28

3.1.4 Correlation between uncertainties	30
3.1.5 Probabilistic modelling of uncertain input parameters	31
3.2 Uncertainty Handling Approaches	32
3.2.1 Probabilistic simulation techniques for power system	34
3.2.1.1 Monte Carlo simulation	34
3.2.1.2 Scenario based analysis	35
3.2.1.3 Point estimate method	35
3.2.2 Possibilistic approach	37
3.2.3 Hybrid probabilistic- possibilistic approaches	37
3.2.4 Info-gap decision theory	38
3.2.5 Robust optimization	38
3.3 Summary	39
Chapter 4: Allocation of FACTS Devices Using a Probabilistic Multi-	
objective Optimization Approach	
4.1 Introduction	
4.2 Objective Functions	
4.2.1 Maximization of the system loadability	
4.2.2 Minimization of real power losses	
4.2.3 FACTS installation cost	43
4.2.4 Constraints	
4.2.4.1 Equality constraints	43
4.2.4.2 Inequality constraints	44
4.2.5 Constraint handling strategy	
4.3 Solution Approach	46
4.3.1 Teaching-learning based optimization	
4.3.2 Best compromise solution	48
4.3.3 Planned approach	48
4.4 Test System and Cases Study	51
4.4.1 Case one: without FACTS devices	52
4.4.2 Case two: with FACTS devices	55
4.4.2.1 Scenario one: three SVCs	55
4.4.2.2 Scenario two: one TCSC	56
4.4.2.3 Scenario three: three SVC and one TCSC	56
4.4.2.4 Comparison of the three scenarios	63
4.5 Approach Assessment	66

4.6 Summary	70
Chapter 5: Congestion Mitigation in Power System using Network Topology Optimization	
5.1 Introduction	71
5.2 Literature Review	72
5.3 Problem Formulation	75
5.3.1 Minimization of generation fuel cost	75
5.3.2 Probabilistic reliability objective	77
5.3.3 Islanding prevention	79
5.4 Multi-objective Optimization Modeling	80
5.4.1 Best compromise solution	
5.4.2 Proposed multi-objective optimization framework	82
5.5 Test System and Results	85
5.5.1 Scenario one: OTS considering SLR	
5.5.2 Scenario two: OTS considering DLR	92
5.5.3 Comparison of the two scenarios	95
5.6 Summary	98
Chapter 6: Conclusion and Future Work	99
6.1 Summary	99
6.2 Main Contributions of the thesis	101
6.3 Future Work	102
Appendix A: Data for IEEE 30-Bus System (100 MVA Base)	103
Appendix B: IEEE RTS-96 System	106
List of Publications	123

List of Figures

Figure 1-1 Worldwide installed wind capacity
Figure 1-2 Wind power capacity and additions, top ten countries, 2019 3
Figure 1-3 Wind power capacity in Egypt across the years
Figure 2-1 SVC steady state circuit representation
Figure 2-2 TCSC steady state circuit representation
Figure 3-1 Normal distribution function
Figure 3-2 linearized wind power and speed characteristic
Figure 3-3 The probability distribution of wind speeds and it's fit to the
Weibull distribution
Figure 3-4 The probability density of the output of the wind power farm and
it's fit to a Beta distribution
Figure 3-5 Probability distribution function of thermal rating
Figure 3-6 The uncertainty modeling approaches
Figure 4-1. Flowchart of proposed algorithm for FACTS devices allocation
Figure 4-2 Modified IEEE 30-bus System
Figure 4-3 Archive member in two objective functions without FACTS
devices53
Figure 4-4 Power flow of IEEE 30-bus system with SLR and DLR53
Figure 4-5 Archive member for allocation of SVC (a) STL, (b) DLR 57
Figure 4-6 Archive member for allocation of TCSC (a) STL, (b) DLR 58
Figure 4-7 Archive member for rating and location of (TCSC-SVC) a (STL),
b (DLR)61
Figure 4-8 MSL (%) comparison for SLR and DLR for different FACTS
devices
Figure 4-9 Active power losses (MW) comparison for SLR and DLR for
different FACTS devices