

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Role of PET/CT in post therapeutic assessment of bronchogenic carcinoma

Thesis

Submitted for partial fulfillment of the MD Degree in Radio-diagnosis

By Amira Ayman Shaheen MB.B.Ch, MSc Radiodiagnosis

Under Supervision of

Dr. Ahmed Mostafa Mohammed

Professor of Radiodiagnosis Faculty of Medicine - Ain shams University

Dr. Mennatoallah Hatem Shalaby

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Samy Elshimy

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain-Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I can hardly find the words to express my gratitude to **Dr. Ahmed Mostafa Mohammed,** Professor of Radiodiagnosis, Faculty of medicine - Ain shams University, for his supervision, continuous help, encouragement throughout this work.

I would like also to express my sincere appreciation and gratitude to **Dr. Mennatoallah Hatem Shalaby,** Assistant professor of Radiodiagnosis, Faculty of medicine - Ain Shams University, for her continuous directions and support throughout the whole work.

I cannot forget the great help of **Dr. Ahmed Mohamed Samy Elshimy**, Lecturer of Radiodiagnosis,

Faculty of medicine - Ain Shams University for his efforts and continuous guidance and support to get this work into light.

Amira Shaheen

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	5
Review of Literarture	
Anatomy of the Lungs	6
Pathology of lung cancer	19
Staging of lung cancer	23
Role of PET-CT in Post Therapeutic Assessmen Bronchogenic Carcinoma	
Patients and Methods	45
Results	55
Illustrative Cases	71
Discussion	88
Summary and Conclusion	96
References	99
Arabic Summary	

List of Abbreviations

Abb.	Full term
18 F –FDG	. 18 F-Fluorodeoxeglucose
	American joint committee on cancer
	Area under curve
	Chronic obstructive lung disease
	Complete response
	Computed tomography
EGFR	Epidermal Growth Factor Receptor
IASLC	International Association for the study of lung cancer
NPV	Negative predictive value
NSCLC	Non small-cell lung cancer
PD	Progressive disease
PET	Positron Emission Tomography
PPV	Positive predictive value
PR	Partial response
RECIST	Response Evaluation Criteria in solid tumors
ROC	Receiver operator characteristic
SCLC	Small cell lung cancer
SD	Stable disease,
SUV	Standardized Uptake Value
SUVmax	Maximum Standardized Uptake Value
TNM	Tumor Node Metastasis
UICC	Union of international cancer control
WHO	World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	The new 8 th TNM classification	
Table (2):	Stages of lung cancer adapted from Edition of TNM in Lung Cancer (from radiologyassistant.nl.)	quoted
Table (3):	RECIST 1.1 criteria for reassessment.	_
Table (4):	Distribution of the lung tumors various lung regions	
Table (5):	T – staging of all tumors	58
Table (6):	Distribution of all patients in the digroups designated according to tre response	atment
Table (7):	Comparison of baseline and patreatment SUV in both Responder and responder groups	id Non-
Table (8):	Comparison between pre-treatment SUV treatment SUV and % change in SUV of the responder and non-responder growth.	(ΔSUV)
Table (9):	The sensitivities, specificities, predictive values (PPV), negative prevalues (NPV), area under curves (AUC) values of the optimum threshold value post-treatment SUV and SUV differentiation of responders from responders	edictive and P s of the for n non-
Table (10):	Comparison of baseline and patreatment SUV in PD, SD, and PR gr	oost –
Table (11)	Comparison between pre-treatment post-treatment SUV and % change is (ΔSUV) of the PD, SD and PR groups	n SUV

List of Figures

Fig.	No.	Title	Page No.
Fig.	(1):	Schematic diagram of the respiratory system showing the upper and lower tracts	
Fig.	(2):	The lobes and fissures of the lungs.	The
		pleurae are shown in blue	
Fig.	(3):	Bronchopulmonary segments	12
Fig.	(4):	Aorta, trachea, anterior view	13
Fig.	(5):	Lymphatic drainage of the lungs	14
Fig.	(6):	Section lower neck	15
Fig.	(7):	Section entering thorax	15
Fig.	(8):	Section superior mediastinum	15
Fig.	(9):	Section aortic arch	15
Fig.	(10):	Section level of carina	16
Fig.	(11):	Section pulmonary trunk	16
Fig.	(12):	Section below carina	16
Fig.	(13):	Section just above diaphragm	16
Fig.	(14):	Section upper lobe	
Fig.	(15):	Section upper lobe lower level	17
Fig.	(16):	Section middle lobe	
_	(17):	Section middle and lower lobes	
_	(18):	Section lower lobe	
_	(19):	Squamous cell carcinoma (epide:	
	` ′	carcinoma)	
Fig.	(20):	Adenocarcinomas arise peripherally mucous glands and the cells retain so	
		the tubular, acinar or pap differentiation and mucus production	oillary
Fig.	(21):	Large cell carcinoma metastasizes early may simply be considered to be those car which do not fit into the categories abov	y and ncers

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (22):	Small (Oat) cell carcinoma, secrete a large amount of hormones	
Fig. (23):	Thoracic PET/CT scans (left) and (right), which were performed for of a 57-year-old female patien with non-small cell lung cancer	a PET scan the staging t diagnosed
Fig. (24):	PET/CT images of a 60-year-old rediagnosed with non-small cell and undergoing radiotherapy	nale patient lung cancer
Fig. (25):	58-year-old woman with T4N2M moderate to poorly diadenocarcinoma in right upper show partial metabolic response	ifferentiated c lung lobe
Fig. (26):		V small cell lobe with to bilateral
Fig. (27):	66-year-old woman initially diag stage IIIA disease who neoadjuvant cisplatin, etopo radiation therapy followed by lobe lobectomy and	gnosed with underwent oside, and right lower
Fig. (28):	lymphadenectomy 1 year before A 68-year-old man with non-sm cancer with post-obstructive ate multiple lymph node metastase staging	all-cell lung lectasis and es at initial
Fig. (29):		
Fig. (30):	Inflammatory FDG uptake at	·
_	path site used for RF ablation	

List of Figures Cont...

Fig. No.	Title	Page	No.
Fig. (31):	Bar chart showing the number of male		
	females in this study		55
Fig. (32):	Stacked column chart showing the contri of males and females in each age group		5.6
Fig. (33):	Bar chart showing the number of sn among both female and male patients		57
Fig. (34):	Box-and-whisker plots of pre and treatment SUV in both responder and responder groups	post- l non-	
Fig. (35):	Box-and-whisker plots of ΔSUV in responder and non-responder groups	both	
Fig. (36):	Receiver operating characteristic analyses		65
Fig. (37):	Box-and-whisker plots of pre-treatment in PD, SD, PR and CR groups		67
Fig. (38):	Box-and-whisker plots of post-trea SUV in PD, SD, PR and CR groups		68
Fig. (39):	Box-and-whisker plots of ΔSUV in PI PR and CR groups	D, SD,	
Fig. (40):	Scatter diagram displaying the positive correlation between Δ SUV Δ SIZE in all patients	strong and	
Fig. (41):	Case 1		
Fig. (41):	Case 2		
Fig. (43):	Case 3		
Fig. (44):	Case 4		
Fig. (45):	Case 5		
Fig. (46):	Case 6		
Fig. (47):	Case 7		
Fig. (48):	Case 8		86

Introduction

ung cancer is the most common cancer; despite major advances in prevention and treatment, it remains the leading cause of cancer-related death worldwide. Over 85% of cases are of non-small cell lung cancer (NSCLC), while the remainder are small cell lung cancers (SCLCs) (*Kitajima et al.*, 2016).

Treatment of lung cancer consists of a combination of surgery, chemotherapy and radiation therapy depending on pathology and stage of the disease. Prognosis of lung cancer is generally poor with five year overall survival rate of about 15% (*Khiewvan et al.*, 2016).

The goals of therapy for patients with NSCLC depend on the stage of disease: for patients with stage I to III disease, the goal is cure, whereas, for those with stage IV disease, the goals are palliation of symptoms and prolongation of life. The goal of therapy in patients with LS-SCLC is cure, which can be achieved through combined modality therapy with chemotherapy plus radiation (*Gadgeel et al.*, 2012).

A multidisciplinary approach including the use of advanced imaging techniques for early accurate staging of disease and delivery of treatment is needed to avoid futile treatments and improve overall survival, which, in turn, influence the patient's quality of life (*Sheikhbahaei et al.*, 2017).

Combining CT with FDG PET is expected to improve accuracy and early diagnosis of progressive disease because changes in cellular metabolism occur more rapidly than do changes in tumor size. By providing information on the metabolic activity of tumor cells, FDG PET has become a powerful tool in assessing treatment response (Sheikhbahaei et al., 2017).

Initial disease staging in newly diagnosed NSCLC can correctly differentiate patients with potentially curable disease from those indicated for palliative therapy. 18F-FDG PET/CT has greater staging accuracy than either of the modalities alone because of the improved detection of additional lymph node involvement or distant metastasis (Kitajima et al., 2016).

Restaging after therapy depending only on morphologic changes usually needs a lot of time to detect any changes (several weeks to months). Also it may be incorrect because of edema and peri-tumoral scar tissue formation which may mask tumor regression. As a result of this, many patients are sometimes treated without any benefit from the therapy bearing unacceptable side effects and costly treatment. Considering the above mentioned reasons, the morphologic response only is not ideal (Koma et al., 2013).

F-FDG PET-CT is largely used in oncology, especially for monitoring the response to treatment. The imaging of changes in glucose metabolism, as reflected by

cellular uptake and trapping of 18 F-FDG, can provide a response assessment that is both more-timely and more accurate than that provided by standard morphological imaging. Furthermore, the residual metabolic activity of tumors after radiotherapy, as measured by 18 F-FDG uptake, has been shown to correlate with the pathologic response, and to be a significant prognostic factor for survival in patients with NSCLC (Massaccesi et al., 2012).

Early prediction of tumor response to treatment is of particular interest in patients with advanced NSCLC. The majority of NSCLC patients presents with unresectable disease (stage IIIB, IV) and undergo palliative therapy with platinumbased chemotherapy regimens and in 30% of patients, first-line chemotherapy is unsuccessful; therefore, a significant number of the patients undergo multiple-week-toxic therapy without any benefit. Early prediction of tumor response would allow physicians to provide patients with non-responsive tumors with alternative forms of treatment with greater time efficiency (*Ordu* et al., 2014).

18F- fluorodeoxyglucose (FDG) is the most common radiotracer used in PET imaging. Studies have shown that the degree of 18F-FDG uptake by the tumor, as assessed with maximum standardized uptake value (SUVmax), is a significant predictive factor in treatment response of lung cancer. SUVmax has been widely used as an indicator of tumor metabolic activity because of its convenience of measurement (Huang et al., 2014).

SUV is calculated by normalizing the attenuation corrected FDG uptake in a lesion to the injected dose and body weight. Maximum standardized uptake value (SUVmax) represents a voxel with the maximum FDG uptake in the region of interest (ROI) (Lee et al., 2016).

Radiological follow-up of bronchogenic carcinoma to assess therapy response using CT established by using Response Evaluation Criteria In Solid Tumor (RECIST criteria) depending on size change and reduction of the tumoral mass. However, structural changes may occur late after positive biological response, giving a false impression of stationary course. Also, central necrosis or hemorrhage secondary to treatment may cause an increase in the tumor mass size, giving a pseudoprogression result in CT (Osman and Korashi, 2020).