

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The role of MDCT in assessment of pleuro-pneumonic changes after breast cancer radiotherapy.

Thesis

Submitted for partial fulfillment of M.D. Degree in Radiodiagnosis

Presented By

Nashwa Gad Basiouny Gad

Master degree of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Supervised By

Prof. Dr / Hanan Mohamed Hanafy Abuzeid

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Prof. Dr / Eman Ahmed Shawky Geneidi

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Dr / Haytham Mohamed Nasser

Lecturer of Radiodiagnosis

Faculty of Medicine

Faculty of Medicine

Ain Shams University

2021

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way.

I would like to express my endless gratitude and appreciation to Prof. Dr. Hanan Mohamed Hanafy Abuzeid & Prof. Dr. Iman Ahmed Shawky Geneidi Professors of Radiodiagnosis, Faculty of medicine, Ain Shams University for giving me the honor of working under their supervision and providing me with a lot of encouragement and support.

My special thanks and deep gratitude to **Dr. Haytham**Mohamed Nasser lecturer of Radiodiagnosis, Faculty of medicine, Ain

Shams University, for his generous assistance and valuable guidance and unfailing efforts during the whole period of the study.

I'm also thankful to my family and to my colleagues in the Radiodiagnosis and intervention Department for their help.

Nashwa Gad Basiouny.

LIST OF CONTENTS

List of Abbreviations	II
List of Tables	III
List of Figures	IV
Introduction and Aim of work	1
List of Figures List of Figures Introduction and Aim of work Anatomy of the pleuro-pneumonic structures Pathology of pleuro-pneumonic changes after breast cancer radiotherapy Radiotherapy treatment techniques Role of MDCT in evaluation of pleuro-pneumonic changes after breast cancer radiotherapy Patients and Methods Results Illustrative cases Discussion Summary and Conclusion References	4
97	15
Radiotherapy treatment techniques	28
	33
Patients and Methods	43
Results	48
Illustrative cases	59
Discussion	69
Summary and Conclusion	87
References	89
Arabic Summary	_

	_ _
ARP	Acute radiation pneumonitis
a-SMA	Alpha smooth muscle actin
ADL	Activities of daily living
BOOP	Bronchiolitis Obliterans Organizing
	Pneumonia
BMI	Body mass index
CTGF	Connective tissue growth factor
CTCAE	Common Terminology Criteria for Adverse
CORD	Events
COPD	Chronic obstructive lung disease
DCIS	Ductal carcinoma in situ
DVH	dose–volume histograms
Endo	Endothelial-to-mesenchymal transition
MT	
EMT	Epithelial-to-mesenchymal transition
ECM	Extracellular matrix
2FRT	2 field radiotherapy
FGF	Fibroblast growth factor
FOV	Field of view
GGO	Ground glass opacity
Gy	Gray
ILD	interstitial lung disease
ILs	Interleukins
IMRT	Intensity modulated radiation therapy
IMN	Internal mammary node
LRRT	Locoregional radiotherapy
MDCT	Multi Detector Computed tomography
MLD	Mean lung dose

NTCP	Normal tissue complication possibility
NSCLC	Non-small cell lung cancer
OP	Organizing Pneumonia
PMRT	Post mastectomy radiotherapy
RUL	Right Upper Lobe
RML	Right Middle Lobe
RF	Radiation Fibrosis
RNS	Reactive nitrogen species
RIOP	Radiation-Induced Organizing Pneumonia
RILD	Radiation-induced lung disease
RP	Radiation Pneumonitis
RT	Radiation Therapy
RTOG	Radiation Therapy Oncology Group.
RIOP	Radiation induced organizing pneumonia
SBRT	stereotactic body radiotherapy
TNF-a	Tumor necrosis factor alpha
TGF-b	Transforming growth factor beta
VEGF	Vascular endothelial growth factor
WBB	Wedged Breast Board

Table	Title	Page
(1)	Routes of spread in breast cancer.	15
(2)	Risk factors for radiation induced lung Injury.	26
(3)	Radiological CT Grading Scale (Vassilios's scale).	46
(4)	Sex type distribution among patients.	48
(5)	Age distribution among patients.	48
(6)	Different pattern of radiation induced lung damage.	49
(7)	Organizing pneumonia.	51
(8)	Metastatic lung deposits.	52
(9)	Radiological Grading Scale of Radiation Induced Pneumonitis (RP).	52
(10)	Respiratory symptoms among patients.	54
(11)	COPD among patients.	55
(12)	Correlation between grading scale and pre- existing chronic obstructive pulmonary disease (COPD).	56
(13)	Radiation beam fields.	57
(14)	Correlation between grading scale and radiation fields at 3 months follow up.	57
(15)	Correlation between grading scale and radiation fields at 9 months follow up.	58

Figure	Title	Page
(1)	Pleural fissures.	6
(2)	Segmental bronchi.	8
(3)	Right lung segmental anatomy.	10
(4)	Left lung segmental anatomy.	11
(5)	Sagittal CT of oblique fissure.	12
(6)	Axial CT section of chest lung window	13
(7)	CT normal lobar and segmental bronchial anatomy.	14
(8)	The pathobiology of radiation pneumonitis and radiation induced lung injury.	20
(9)	Close up schema of the relationship between RP.	21
(10)	Steps of external beam radiation.	28
(11)	Radiation portals.	29
(12)	Radiation fields effect on lung tissue.	30
(13)	Radiation affects adjacent structures as well as operation bed.	32
(14)	Organizing pneumonia.	37
(15)	Radiation-induced tumor.	38
(16)	Late pleural and lung changes.	40
(17)	Examples of pleural effusion.	41
(18)	Metastatic breast cancer changes.	42
(19)	Age distribution among patients.	48
(20)	Different pattern of radiation induced damage.	50

(21)	Organizing Pneumonia.	51
(22)	Metastatic lung deposits.	52
(23)	Radiological Grading Scale of Radiation Induced Pneumonitis (RP).	53
(24)	Respiratory symptoms among patients.	54
(25)	COPD among patients.	55
(26)	Correlation between grading scale and preexisting COPD.	56
(27)	Radiation fields.	57
(28)	Case 1	59
(29)	Case 2	60
(30)	Case 3	61
(31)	Case 4	62
(32)	Case 5	63
(33)	Case 6	64
(34)	Case 7	65
(35)	Case 8	66
(36)	Case 9	67
(37)	Case 10	68

Introduction & Aim of work

Introduction

Breast cancer is the most common cancer diagnosed among women, accounting for nearly 1 in 3 cancers. It is also the second cancer death among women after lung cancer (**DeSantis.**, et al 2013).

In fact, 89% of women with a history of breast cancer are breast cancer survivors. These patients have most often been treated with combination of surgical resection, radiation therapy, and possibly chemotherapy (Neal., et al 2014).

Post operative radiotherapy plays an important role in the management of breast cancer and can reduce local and regional recurrence, thereby improving outcomes (Oie et al., 2013).

Chest wall radiotherapy may damage the underlying normal lung tissue in 5–15 % of patients irradiated for breast cancer (**Omarini et al., 2014**).

Radiotherapy may be complicated by radiation pneumonitis, the early stage of which occurs one to after months treatment and characterized three is radiologically ground glass opacities by and consolidation in the irradiated port (Khashper et al., 2015).

The late phase also known as fibrosis develops six months after the completion of radiation therapy and can progress for as long as two years (Yilmaz et al., 2014).

This can produce pleural changes that manifest themselves on CT images as smooth pleural based thickening contiguous with the radiation portal (Yilmaz et al., 2014).

Computed tomography (CT) is the technique of choice for the study of thoracic complications that are not visible on chest X-rays. Early detection of complications is of great importance for an effective treatment (**Gimenez.**, 2011).

CT can be used in the diagnosis of radiation pneumonitis. It may show ground glass opacities, consolidation, fibrosis, atelectatic cicatrization, pulmonary volume loss or pleural thickening (Giridhar et al., 2015).

Aim of work

The aim of our work is to evaluate the pleuropneumonic changes after breast cancer radiotherapy by MDCT.