

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of Therapeutic Bronchoscopy in Comparison to Standards of Care in Critically III Patients with Acute Respiratory Failure

Thesis

Submitted for partial Fulfillment of Master Degree in General Intensive Care

${\mathfrak B}{\mathfrak r}$ Mohamed Atef Elbasiony Hassan

M.B.B.Ch Faculty of Medicine – Mansoura University

Supervisors

Prof. Dr. Bassel Essam Noureldin

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain shams University

Prof. Dr. Ayman Ahmad Elsayed Abdellatif

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain shams University

Dr. Noura Mohammed Youssri Ahmed Mahmoud

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, I would like to express my foremost thanks, gratefulness and love to **ALLAH**, most merciful and greatest beneficial.

I am deeply indebted and grateful to **Prof. Dr. Bassel Essam Noureldin**, for his great help, his sincere efforts, support and his simplicity in handling matters.

I am deeply thankful to **Prof. Dr. Ayman Ahmad Elsayed Abdellatif**, who gave me a lot of his time, for his meticulous supervision, generous help, outstanding support and active participation, and for his extreme patience and understanding.

I also wish to express my gratitude to **Dr. Noura**Mohammed Youssri, for her indispensable advice and great help in this work.

Mohamed Atef Elbassiony

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Acute Respiratory Failure	4
Endotracheal Suction	24
Fiberoptic Bronchoscopy	33
Patients and Methods	43
Results	49
Discussion	68
Summary	75
References	79
Arabic Summary	<u>-</u> -

List of Abbreviations

Abb.	Full term
ARG	.Arterial Blood Gases
	.Acute Lung Injury
	.Airway Pressure Release Ventilation
	.Acute Respiratory Distress Syndrome
	. Acute Respiratory Failure
	.Broncho-Alveolar Lavage
BAS	_
	-
	.Complete Blood Count
CESAR	.Conventional Respiratory Support Versus Extracorporeal Membrane Oxygenation For Severe Acute Respiratory Failure
CNS	.Central Nervous System
COPD	.Chronic Obstructive Pulmonary Disease
COVID-19	.Coronavirus Disease 2019
CPAP	.Continuous Positive Airway Pressure
CT	.Computed Tomography
DM	.Diabetes Mellitus
ECG	. Electrocardiography
ECMO	.Extracorporeal Membrane Oxygenation
ETS	.Endotracheal Suction
ETT	. Endotracheal Tube
FBS	.Fiberoptic Bronchoscopy
FFP	.Flexible Fiberoptic Bronchoscopy
FiO2	. Fraction of Inspired Oxygen
HFNC	.High Flow Nasal Cannula
HFNO	. High Flow Nasal Oxygen
HTN	v c

List of Abbreviations Cont...

Abb.	Full term
ICII	Intensive Care Unit
	Invasive Mechanical Ventilation
NIV	Non Invasive Ventilation
P(A-a)O2	Difference Between Calculated Alveolar and Measured Arterial Oxygenation Levels
PaCO2	Partial Pressure of CO2
PaO2	Partial Pressure of O2
PEEP	Positive End Expiratory Pressure
PH	Potential of Hydrogen
PiO2	Pressure of Inspired Oxygen
RCTs	Randomized Control Trials
SaO2	Oxygen Saturation
SARS-COV-2	Severe Acute Respiratory Syndrome Corona Virus 2
TSA	Trial Sequential Analysis

List of Tables

Table No.	Title	Page No.
Table (1):	Common causes of hypoxemic hypercapnic respiratory failure	
Table (2):	Clinical manifestations of hypoxemia	
Table (3):	Radiographic approach to respiratory failure	
Table (4):	The indications of ETS.	25
Table (5):	The complications of ETS	32
Table (6):	Therapeutic indications for bronchos	scopy34
Table (7):	Complications of Fiberoptic Broncho	scopy36
Table (8):	Comparison between Group A: Tradstandards of care and Group B: Fibronchoscopy according to demographic data regarding age and	reoptic their
Table (9):	Comparison between Group A: Trad- standards of care and Group B: Fibi bronchoscopy according to their factors regarding DM and HTN	reoptic risk
Table (10):	Comparison between Group A: Tradestandards of care and Group B: Fibronchoscopy according to their length of stay (days).	reoptic ICU
Table (11):	Comparison between Group A: Tradestandards of care and Group B: Fibronchoscopy according to their regarding "PaCO2".	reoptic ABG
Table (12):	Comparison between Group A: Tradstandards of care and Group B: Fibronchoscopy according to their regarding "PaO2"	reoptic ABG

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Comparison between Group A: 's standards of care and Group B: bronchoscopy according to tregarding "PaO2/FiO2 ratio"	Fibreoptic heir ABG
Table (14):	Comparison between Group A: 's standards of care and Group B: bronchoscopy according radiological improvement	Fibreoptic to their
Table (15):	Comparison between Group A: 's standards of care and Group B: bronchoscopy according to their of mechanical ventilation	Fibreoptic r duration

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Chest radiographs (left) and computed tomography (CT) scans (right) of the three most common findings in diseases causing acute respiratory failure	
Figure (2):	Treatment options in acute hypoxemic respiratory failure	
Figure (3):	Characteristic sawtooth pattern of the expiratory flow signal, which suggests the need for suctioning	
Figure (4):	Bronchoscope inserted through swivel connector in the face mask	
Figure (5):	Fiber-optic bronchoscopy through non-invasive ventilation	
Figure (6):	Bronchial findings in coronavirus disease (COVID-19) cases	
Figure (7):	Bar chart between Group A: Traditional standards of care and Group B: Fibreoptic bronchoscopy according to their age (years).	
Figure (8):	Bar chart between Group A: Traditional standards of care and Group B: Fibreoptic bronchoscopy according to their sex	
Figure (9):	Bar chart between Group A: Traditional standards of care and Group B: Fibreoptic bronchoscopy according to their risk factors)DM&HTN).	
Figure (10):	Bar chart between Group A: Traditional standards of care and Group B: Fibreoptic bronchoscopy according to their ICU length of stay "days"	

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (11):	Comparison between Group A: Trad standards of care and Group B: Fibronchoscopy according to their regarding "Paco2"	reoptic ABG	56
Figure (12):	Comparison between Group A: Trad standards of care and Group B: Fibronchoscopy according to their regarding "Pao2". C)PaO2/FiO2 ratio	reoptic ABG	59
Figure (13):	Comparison between Group A: Trad standards of care and Group B: Fibbonchoscopy according to their regarding "PaO2/FiO2 ratio"	reoptic ABG	62
Figure (14):	Bar chart between Group A: Trad standards of care and Group B: Fibronchoscopy according to radiological improvement	reoptic their	65
Figure (15):	Bar chart between Group A: Trad standards of care and Group B: Fibronchoscopy according to their dura mechanical ventilation	reoptic tion of	67

Introduction

cute respiratory failure (ARF) is a sudden failure of oxygenation, carbon dioxide clearance or both. Hypoxic ARF is most commonly caused by pneumonia, cardiogenic or non-cardiogenic pulmonary edema, or pulmonary haemorrhage, while the underlying causes of hypercapnic ARF include drug overdose, neuromuscular disease, chest wall abnormalities and severe obstructive airway disorders (*Warrell et al., 2011*). The most severe type of ARF is acute respiratory distress syndrome (ARDS) (*Rubenfeld et al., 2012*).

Many advances have been seen over the past few years regarding supportive treatment (i.e., mechanical ventilation) of patients suffering ARF and needing clinical management in an intensive care unit (ICU) (Mancebo et al., 2002). Endotracheal suctioning (ET suctioning) is an important activity in reducing the risk of consolidation and atelectasis that may lead to inadequate ventilation (Day et al., 2002). ET suctioning is a component of bronchial hygiene therapy and mechanical ventilation that involves the mechanical aspiration of pulmonary secretions from a patient's artificial airway to prevent its obstruction (Guglielminotti et al., 1998).

It is common to perform diagnostic and therapeutic bronchoscopies simultaneously. In one study of 198 fiberoptic bronchoscopies performed in critical care units, 47% were performed for therapeutic reasons, 44% for diagnostic reasons,

and 9% for both potential benefits of therapeutic bronchoscopy include increased oxygenation and reduced respiratory work of breathing (Tai, 1998). While the potential harms include hypoxemia, laryngo and bronchospasm, bleeding, cardiovascular complications. Therapeutic bronchoscopy with endobronchial washing and/or suctioning is used in critically ill patients with ARF to remove secretion, reinflate atelectasis and increase oxygenation (Raoof et al., 2001).

Broncho-Alveolar Lavage (BAL), bronchial wash, and protected specimen brush are bronchoscopic procedures used to provide microbiological samples from lower respiratory airways. However, because of the risk of viral transmission, bronchoscopy is not routinely indicated for the diagnosis of COVID-19 (Wahidi et al., 2020). Bronchoscopy in critically ill patients with COVID-19 has been required to manage complications (atelectasis, hemoptysis, etc.) as well as to obtain samples for microbiological cultures and to assist in the management of artificial airways (guide intubation and percutaneous tracheostomy) (Liang et al., 2020).