

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Screening for Chronic Kidney Disease in type 2 diabetic patients: Single centre study

A Thesis

Submitted for partial fulfillment of Master degree in Internal Medicine

By

Pemen Nasief Hanna

M.B.B.Ch, Cairo University

Under Supervision of

Prof. Dr. Howayda Abdelhamid Elshinnawy

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Essam Nour Eldin Afifi

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Reem Mohsen El-Sharabasy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

2021

Acknowledgments

First and foremost, I feel always indebted to Allah, who gave me the strength to accomplish this work.

I wish to thank my late **Father**, who unfortunately fate didn't allow him to see this work, for his endless love, sacrifices and advice.

My warmest thanks and love to my Mother, my Wife and my brother for their encouragement, enduring me and standing by me.

I wish to express my deep appreciation, thanks and gratitude to my supervisors:

Prof. Dr. Howayda Abdelhamid Elshinnawy,

Professor of Internal Medicine and Nephrology, Ain Shams

University, Prof. Dr. Essam Nour Eldin Afifi, Assistant

Professor of Internal Medicine and Nephrology, Faculty of Medicine,

Ain Shams University, and Dr. Reem Mohsen El-Sharabasy,

Lecturer of Internal Medicine and Nephrology, Faculty of Medicine,

Ain Shams University, for their close supervision, support, valuable

instructions, continuous help, patience, advices and guidance.

Pemen Nasief Hanna

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	41
Results	44
Discussion	68
Summary and Conclusion	79
Recommendations	83
References	84
Arabic Summary	—

List of Abbreviations

Abbr.		Full-term
ACCORD	:	Action to Control Cardiovascular Risk in Diabetes
ACE	:	Angiotensin Converting Enzyme
ACR	:	Albumin to Creatinine Ratio
ADA	:	American Diabetes Association
ADVANCE	:	Action in Diabetes and Vascular disease:
		preterAx and diamicroN mr Controlled
		Evaluatio
AER	:	Albumin Excretion Rate
AGEs	:	Advanced glycation end products
ANG	:	Angiotensin
ARBs	:	Angiotensin Receptor Blockers
ATP	:	Adenosine triphosphate
BMI	:	Body mass index
BP	:	Blood Pressure
BUN	:	Blood urea nitrogen
CARDS	:	Collaborative Atorvastatin Diabetes Study
CCB	:	Calcium channel blockers
CKD	:	Chronic Kidney Disease
CKD-Epi	:	Chronic Kidney Disease Epidemiology
CVD	:	Cardiovascular disease
DAG	:	Diacylglycerol
DCCT	:	Diabetes Control and Complications Trial
DKD	:	Diabetic kidney disease
DM	:	Diabetes Milletus
DN	:	Diabetic Nephropathy
DNA	:	Deoxyribonucleic acid
DPP IV	:	Dipeptidyl-peptidase-4
DR	:	Diabetic retinopathy

EDIC : Epidemiology of Diabetes Interventions and

Complications

eGFR : Estimated Glomerular Filtration RateERK : Extracellular Signal-Regulated Kinase

ESRD : End Stage Renal Disease

ET-1 : endothelin-1

FADH : Flavin adenine dinucleotide

GBM: The Glomerular Basement Membrane

GFRGlomerular Filtration RateGLP-1Glucagon-like peptide 1

GLP-1 RAs: Glucagon-like peptide 1 receptor agonists

GLUT : Glucose transporter

HDL : High -density lipoproteinsHPS : Heart Protection Study

IDF : International Diabetes Federation

IGFs: Insulin-like growth factors

IL: interleukin

KDIGO: Kidney Disease Improving Global

Outcomes

KDOQI : Kidney Disease Outcomes Quality Initiative

LDL : Low-density lipoproteins

MAPK
 Mitogen-activated protein kinase
 MCP-1
 Monocyte Chemoattractant Protein
 Modification of Diet in Renal Disease

MNLs : Mesangiolytic *nodular* lesions

NADPH : Nicotinamide adenine dinucleotide

phosphate

NF-KB : Nuclear factor kappa-light-chain-enhancer

of activated B cells

NICE : National Institute for Health and Care

Excellence

NIDDM: Noninsulin-Dependent Diabetes Mellitus

NO : Nitric oxide

Nrf2 : Nuclear factor erythroid 2-related factor 2

PAM : Periodic acid-methenamine silver

PAS : Periodic acid-Schiff

PCR : Protein to Creatinine Ratio

PCSK9 : Proprotein convertase subtilisin/kexin type 9

PDGF : Platelets derived growth factor

PKC: Protein Kinase C

PPAR : Peroxisome proliferator-activated receptor

PVD : Peripheral vascular disease

RAASRenin Angiotensin Aldosterone SystemRAASiRenin-angiotensin-aldosterone system

inhibitors

RAGE: Receptor for Advanced Glycosylation End

Product

RI : resistive index

ROS : Reactive Oxygen Species

SGLT2 : Sodium-glucose co-transporter-2

SIGN : Scottish Intercollegiate Guidelines Network

T1DM : Type 1 Diabetes Milletus
T2DM : Type 2 Diabetes Milletus
TGF : Transforming Growth Factor
TNF-a : tumor necrosis factor alpha

TZDs: Thiazolidinediones

UACR : Urine Albumin to Creatinine Ratio

UAE : Urinary Albumin Excretion

UKPDS : United Kingdom Prospective Diabetes

Study

USRDS : United states Renal Data SystemVADT : Veterans Affairs Diabetes Trial

VEGF: Vascular Endothelial Growth Factors

List of Tables

Table No.	Title Page N	Vo.
Table (1):	Recommendations for screening, monitoring and management of diabetic renal disease	. 25
Table (2):	Stages of diabetic nephropathy according to urinary albumin level	. 27
Table (3):	DM Treatment and renal effects	. 32
Table (4):	Statin therapy for lipid management in diabetic patients	. 37
Table (5):	Treatment options for Anemia of CKD	. 38
Table (6):	Distribution of the studied patients according to demographic characteristics	45
Table (7):	Description of disease specific data among studied groups	. 46
Table (8):	Description of the laboratory results of the studied patients:	. 47
Table (9):	GFR and albuminuria changes among the studied population	. 48
Table (10):	Distribution of the studied patients in different stages of CKD	. 50
Table (11):	Description of diabetic complications among studied patients	. 51
Table (12):	Description of macrovascular complications (PVD and cardiovascular disease) among patients with nephropathy in the studied population	52

Table (13):	eGFR and albuminuria changes in relation to gender among the studied population
Table (14):	Relation between duration of DM and diabetic complications in the studied population
Table (15):	Incidence of nephropathy among studied population according to their treatment regimens
Table (16):	Relation between diabetic retinopathy and nephropathy of the studied patients 58
Table (17):	Relation between stroke history and nephropathy of the studied population 60
Table (18):	Relation between history of neuropathy and nephropathy of the studied patients 62
Table (19):	Incidence of PVD in patients with nephropathy63
Table (20):	Incidence of amputation in patients with nephropathy of the studied patients: 64
Table (21):	Incidence of abnormal echocardiography findings in patients with nephropathy of the studied patients
Table (22):	Regression analysis of duration of DM and ACR for sensitivity prediction of eGFR among the studied patients

List of Figures

Figure No	. Title	Page No.
Figure (1):	Clinical features of diabetic nephro	pathy 6
Figure (2):	Percentage of incident patients ESRD due to diabetes	
Figure (3):	Simple schema for the pathogen diabetic nephropathy	
Figure (4):	Stages of Nephropathy with relat to Urinary Albumin level	-
Figure (5):	Treatment of hypertension in opatients	
Figure (6):	Treatment algorithm for one phropathy	
Figure (7):	Pie chart showing distribution studied patients according to gende	
Figure (8):	Pie chart showing distribution of the patients according to average eGFR	
Figure (9):	Pie chart showing distribution studied patients according albumin/creatinine ratio	g to
Figure (10):	Combined bar chart showing between sex and average eGFR cat among the studied patients	tegories
Figure (11):	Combined bar chart showing between ACR and average eGF duration of diabetes	FR and

Figure (12):	Combined bar chart showing relation between fundus examination result and diabetic nephropathy among the studied patients.	59
Figure (13):	Combined bar chart showing relation between history of stroke and diabetic nephropathy among the studied patients	51
Figure (14):	Combined bar chart showing result of lower limb duplex among the patients with diabetic nephropathy.	53
Figure (15):	Combined bar chart showing result of echocardiography among the patients with diabetic nephropathy	56

Introduction

Diabetes is a complex, chronic illness requiring continuous medical care with multifactorial risk-reduction strategies beyond glycemic control. Ongoing diabetes self-management education and support are critical to preventing acute complications and reducing the risk of long-term complications. Significant evidence exists that supports a range of interventions to improve diabetes outcomes. (American Diabetes Association, 2020).

DM is worldwide epidemic and great challenge to health care systems everywhere. Current global estimates indicate that this condition affects 415 million people, and 193 million of them have not yet been diagnosed (**Al-Lawati, 2017**).

Type 2 diabetes results from the body's ineffective use of insulin. Type 2 diabetes comprises 90% of people with diabetes around the world (**Cusick et al., 2010**).

Chronic hyperglycemia is frequently associated with permanent and irreversible functional and structural changes in the cell of the body particularly in vascular system which affect kidney (Yadav et al., 2016)

Diabetic nephropathy is a common complication of diabetes mellitus type 2. It not only occurs in 20-40% of all

diabetic patient, but it is one of the major end-organ complication of diabetes and continue to be the most common cause of end stage renal disease (American Diabetes Association, 2015).

Diabetic nephropathy is the leading cause of ESRD worldwide and is associated with increased cardiovascular morbidity and mortality. Its early detection and identification of its risk factors allow the implementation of individualized and aggressive intervention programs to reduce renal and cardiovascular outcome (Valmadrid et al., 2000).

nephropathy Diabetic is clinical a syndrome characterized by persistent albuminuria (> 300 mg/24 h, or > 300 mg/g creatinine), a relentless decline in glomerular filtration rate (GFR), raised arterial blood pressure, and enhanced cardiovascular morbidity and mortality. the first clinical sign is moderately increased urine albumin excretion (microalbuminuria: 30–300 mg/24 h, or 30–300 mg/g creatinine). Untreated microalbuminuria will gradually worsen, reaching clinical proteinuria.. The GFR then begins to decline, and without treatment, end-stage renal failure is likely to result in 5 to 7 years. Regular, systematic screening for diabetic kidney disease is needed in order to identify patients at risk of or with presymptomatic diabetic kidney disease. (Rossing et al., 2018).