

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ultrasound Guided Preoperative Assessment of Inferior Vena Cava Collapsibility Index in Prediction of Intraoperative Hypotension in Patients undergoing Laparoscopic Cholecystectomy Surgery under General Anesthesia

Thesis

Submitted for Partial Fulfillment of Master Degree in **Anaesthesia**

By

Amr Abd El-Razek Sayed Yassen
M.B.B.CH, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Bassem Boles Ghobrial

Professor of Anesthesia, ICU and Pain Management Faculty of Medicine, Ain Shams University

Dr. Heba Abdel Azim Labib

Assistant Professor of Anesthesia, ICU and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mahmoud Saad Mohamed

Lecturer of Anesthesia, ICU and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'd like to dedicate this work to the soul of my father Abd El Razek Yassen who passed away this year for his support and love by all means, may God rest his soul.

Also I'd like to express my deepest gratitude and appreciation to **Prof. Dr. Bassem Boles Ghobrial**, Professor of Anesthesia, ICU and Pain Management Faculty of Medicine Ain Shams University, who initiated and designed the subject of this thesis for his kindness over available fatherly attitude and untiring supervision and support during the whole work.

My extreme thanks and gratefulness to **Dr. 76eba**Abdel Azim Labib Assistant Professor of Anesthesia, ICU

and Pain Management Faculty of Medicine Ain Shams

University, I'm much grateful for her patience, strict

supervision, helpful criticism and revision of this work.

I'd like also to thank **Dr. Mahmoud Saad Mohamed**, Lecturer of Anesthesia, ICU and Pain Management Faculty of Medicine Ain Shams University, for the efforts and times he has devoted to accomplish this work, his valuable advices helped me a lot to pass many difficulties.

Last but not least I'd like to thank my beloved **mother** and my beloved **wife** for there great support and huge effort that helped me to go on my way to complete this work, without you non of this work would indeed be possible thanks you a lot.

Amr Abd El-Razek Sayed Yassen

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	5
Review of Literature	
■ Inferior Venacava Anatomy and Function	6
• Physiology of Hemodynamic Homeostasis	10
Haemodynamic Monitoring	31
• Assessment of Inferior Venacava Collapsibility Ultrasound	· ·
Patients and Methods	59
Results	66
Discussion	78
Conclusion	83
Recommendations	84
Summary	85
References	89
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
Δ P	Pressure gradient
	Atrial natriuretic peptide
ASA	American society association of anesthesiology
<i>BMI</i>	Body mass index
cGMP	Cyclic guanosine monophosphate
<i>CI</i>	Cardiac index / collapsibility index
<i>CO</i>	Cardiac output
CVP	Central venous pressure
<i>DBP</i>	Diastolic blood pressure
<i>DM</i>	Diabetes mellitus
DO ₂	Oxygen delivery
ET	Endothelin
ETCO2	End tidal carbon dioxide
<i>F.</i>	Flow
<i>FHM</i>	Functional hemodynamic monitoring
FiO ₂	Fraction of inspired oxygen
HR	Heart rate
HTN	
<i>IAP</i>	Intra-abdominal pressure
<i>ICU</i>	Intensive care unit
<i>IVC</i>	Inferior venacava
IVC/Ao	Inferior venacava diameter/Aortic diameter
IVC-CI	Inferior venacava collapsibility index
IVC-DI	Inferior venacava distensibility index
IVCmax	Inferior venacava maximum diameter

Tist of Abbreviations cont...

Abb.	Full term
IVC-min	Inforior non goong minimal diameter
	Inferior venacava minimal diameter
<i>L</i>	o ,
<i>LA</i>	•
LV	•
	.Minimal alveolar concentration
<i>MAP</i>	.Mean arterial pressure
η	.Viscosity
<i>NIRS</i>	.Near-infrared spectroscopy
<i>NO</i>	.Nitric oxide
<i>P</i> _A	.Arterial pressure
<i>PAC</i>	.Pulmonary artery catheter
	arterial partial pressure of oxygen
PAOP	.Pulmonary artery occlusion pressure
PCO ₂	Partial pressure of carbon dioxide
<i>PCWP</i>	.Pulmonary artery wedge pressure
PLR	.Passive leg raising test
PPmax	.Maximum pulse pressure
<i>PPmin</i>	.Minimal pulse pressure
<i>PPV</i>	.Pulse pressure variation
P v	Venous pressure
<i>Q</i>	.Flow rate
<i>R</i>	.Resistance
<i>RA</i>	.Right atrium
RAAS	.Renin angiotensin aldosterone system
RASS	.Richmond Agitation Sedation Scale
ROC	.Receiver operator curve
<i>RR</i>	.Respiratory rate

Tist of Abbreviations cont...

Abb.	Full term	
RV	Right ventricle	
<i>SBP</i>	Systolic blood pressure	
$ScvO_2$	Central venous oxygen saturation	
<i>SD</i>	Standard deviation	
<i>SDF</i>	Side stream dark field	
<i>SPP</i>	Systolic pressure variation	
StO_2	Local tissue oxygen saturation	
SV	Stroke volume	
SVC	Superior venacava	
SvO_2	Venous oxygen saturation	
SVR	Systemic vascular resistance	
SVV	Stroke volume variation	
VO ₂	Oxygen uptake	
VOT	Vascular occlusion test	

List of Tables

Table No.	Title	Page No.
Table 1:	Demographic data distribution amor group (n=50)	-
Table 2:	Risk factors distribution among stud (n=50).	
Table 3:	Inferior vena cava measurements disamong study group (n=50)	
Table 4:	Comparison between initial baseling arterial blood pressure "mmHg" are measurements "After induction are insufflation of abdomen" among studievery 3 minutes.	nd other nd after ly group
Table 5:	Correlation between IVC CI% and ChamBP (mmHg) in patients group	•
Table 6:	Hypotension (MAP <60 mmHg) distance among study group (n=50)	
Table 7:	Comparison between initial baseline rate "beat/min" and other measuremen induction and after insufflation of a among study group.	ts "After bdomen"

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Anatomy of inferior vena cava and its into the right atrium	
Figure 2:	Schematic representation of the cardiac output distribution to the organ beds and tissue groups in the book	different
Figure 3:	The relationship between flow, pressure and resistance is displayed	
Figure 4:	Nitric oxide production cycle	22
Figure 5:	Schematic representation of the action renin-angiotensin-aldosteron pathworthe vasopressin pathway in the regulation blood pressure.	ay and lation of
Figure 6:	Schematic representation of the intracellular signaling pathways inverthe signal transduction from activation to vascular smooth must contraction.	olved in receptor scle cell
Figure 7:	Overview of the different factors inv the regulation of blood pressure	
Figure 8:	Strip chart recording of airway press arterial pressure for a subject during pressure ventilation	positive
Figure 9:	Technique of IVC ultrasonography	53
Figure 10:	Sex distribution among study group	68
Figure 11:	ASA classification distribution amor	-
Figure 12:	Risk factors distribution among study a	group 70

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 13:	Comparison between initial basel arterial blood pressure "mmHg" measurements "After induction insufflation of abdomen" among stud	and other and after
Figure 14:	Scatter plot between IVC CI% and C MBP (mmHg) after induction from b	O
Figure 15:	Scatter plot between IVC CI% and C MBP (mmHg) after insufflation of from baseline	f abdomen
Figure 16:	Hypotension MAP <60 mmHg d among study group	
Figure 17:	Comparison between initial baseline "beat/min" and other measureme induction and after insufflation of among study group	nts "After abdomen"

Introduction

To doubt Laparoscopic surgery aims to minimize trauma of the interventional process but still achieve a satisfactory therapeutic results. It is commonly performed because of various advantages such as reduced postoperative pain, faster recovery and more rapid return to normal activities, shorter hospital and reduced stay, postoperative pulmonary complications. The operative technique requires inflating gas into the abdominal cavity to provide a surgical procedure. An intra-abdominal pressure (IAP) of 10-15 mmHg is used (Gerges et al., 2006).

Hemodynamic changes include the alterations in arterial blood pressure, arrhythmias and cardiac arrest may happen. These cardiovascular changes depend on the interaction of several factors including patient positioning, neurohumoral response and the patient factors such as cardiorespiratory status and intravascular volume (Leonard and Cunningham, 2002).

Although patients with normal cardiovascular function are able to well tolerate these hemodynamic changes but hypovolemic patients perioperatively or At IAP levels greater than 15 mmHg, venous return decreases leading to decreased cardiac output and hypotension (Sevki et al., 2019).

So maintaining hemodynamic stability is essential for rate of postoperative complications reducing the

intraoperative hypotension incidence. Although intraoperative hypotension has no universal definition, it has a serious impact on myocardial injury, acute kidney injury, septic complications (Haynes et al., 2011), the risk of 30-day mortality (Gu et al., 2018), as well as the risk of one-year mortality in selected patient populations (Bijker et al., 2009).

Reoperative fluid deficit should be determined and restored through history, physical examination, hemodynamic measurements and laboratory outcomes in order to eliminate the risk for intraoperative hypotension (Butterworth et al., 2013). Given the limitations of static parameters, the use of dynamic parameters may be superior in evaluation of hemodynamic response (Marik et al., 2008; Renner et al., 2009; Thiele et al., 2015).

Several invasive devices (e.g., pulmonary arterial catheter, PiCCO®, Vigileo®, etc.) are available for evaluating preload among other elements of hemodynamic status, but their universal use is not a reasonable option due to financial relatively high complication constraints, rates, limitations and unnecessary invasiveness compared to most surgical procedures (Vincent et al., 2015).

In a recent meta-analysis, Ferreira et al. reported an approximately 31% change in anaesthesia management when ultrasound was used. Thirty-five percent of the performed transthoracic echocardiographies ultrasonographies were