

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Women for Arts, Science and Education

Spectroscopic studies, thermal and catalytic activity toward dye decolorization of some new metal complexes

A Thesis Submitted for the Degree of **M.Sc.** as a partial Fulfillment for Requirements of the M.Sc. of Science In Inorganic & Analytical Chemistry

Presented By

Aml Adel Amer Awad (B.Sc. 2015)

Supervised by

Prof. Dr. Omyma Ahmed Moustafa

Professor of Inorganic Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo-Egypt.

Dr. Abeer Sayed Salama

Lecturer of Inorganic and Analytical Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo – Egypt.

Dr. Doaa Abdel Fattah

Lecturer of Inorganic and Analytical Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo Egypt.

(2021)

Ain Shams University Faculty of Women for Arts, Science and Education

Spectroscopic studies, thermal and catalytic activity toward dye decolorization of some new metal complexes

THISIS ADVISORS A	APPROVED
Prof. Dr. Omyma Ahmed Moustafa Ali	
Prof. of Inorganic Chemistry, Chemistry depart	tment
Faculty of Women for Arts, Science and Educa	tion, Ain
Shams University, Cairo – Egypt.	
Dr. Abeer Sayed Salama	
Lecturer of Inorganic and Analytical Chemistry	7,
Chemistry department, Faculty of Women for A	Arts, Science
and Education, Ain Shams University, Cairo –	Egypt.
Dr. Doaa Abdel-fattah Hasan	
Lecturer of Inorganic and Analytical Chemistry	7
Chemistry department, Faculty of Women for A	•
and Education, Ain Shams University, Cairo –	
Approval of Chemistry Department Council	/ /2021
Approval of Faculty Council	/ /2021
Approval of university Council	/ /2021

Ain Shams University Faculty of Women for Arts, Science and Education

Qualifications

Student Name: Aml Adel Amer Awed

Scientific Degree: B.Sc.

Department: Chemistry

Name of Faculty: Faculty of Women

University: Ain Shams University

B.Sc. Graduation Date: 2015

NOTE

Beside the work done in this thesis, the candidate student has attended post-graduate courses for one year in inorganic and analytical chemistry including the following topics:

-	Instrumental Analysis	(CHEM 601)
---	------------------------------	------------

-	Advanced Coordination Chemistry	(CHEM 631)
-	Radiation Chemistry	(CHEM 632)
-	Writing Scientific Research	(SCR 610)
-	Spectroscopy	(CHEM 630)
-	Ethics of Scientific Research	(SCR 620)
-	Structural Inorganic Chemistry	(CHEM 636)
_	Advanced Reaction Mechanism	(CHEM 634)

She has successfully passed written examinations in the above mentioned topics.

Head of Chemistry Department

Acknowledgement

First and most, I think God.

I am very grateful to my supervisor prof. Dr. **Omyma Ahmed Moustafa**, professor of Inorganic Chemistry, Chemistry Department, Faculty of women, Ain Shams University, for suggesting the research problem and her deep insight, for scientific valuable discussions and illuminating comments that made this work possible. I am indeed very proud to be a student belongs to her research school of chemistry.

I wish to thank **Dr. / Doaa Abdel Fattah**, lecturer of Inorganic

Chemistry, Chemistry Department, Faculty of Women, Ain Shams University for support and continuous help

My thanks extend also to all the staff members and my collages at Faculty of women Ain Shams University for their cooperation during this work

Finally, I am very grateful to my family. A special dedication to my mum and sister who enabled me to finish this work through their love, care and encouragement. I want to thank them very much.

Aml Adel

CONTENTS

			PAGE
List of Schemes			I
List of Figures			III
List of Tables			X
List of Abbreviations	XIV Abstract	XV	

CHAPTER (I)

General Introduction

I.1. Introduction	1
I.2. Applications of Schiff bases and transition metal complexes	2
I.3. Schiff bases complexes derived from benzidine and its derivatives	5
I.4. Schiff bases complexes derived from 3,5 dichlorosalicylaldehyde and its derivatives	15
I.5. Schiff base metal carbonyl complexes	24
Objective of the work	38
CHAPTER(II) EXPERIMENTAL	
II.1. Materials and reagents	40
II.2. Instrumentations	40
II.2.1. Elemental analysis	40
II.2.2. Mass spectra	40
II.2.3. Conductance measurements	40
II.2.4. Infrared spectra measurements	41
II.2.5. Proton nuclear magnetic resonance spectra	41

II.2.6. Magnetic properties	41
II.2.7. Electronic spectra	42
-	
II.2.8. Fluorescence properties	42
II.2.9. Thermal analyses	42
II.3. DFT study	43
II.4. Synthesis of the Schiff base 6,6'- (([1,1'biphenyl]-4,4'-diylbis(azaneylylidene)) bis (methaneylylidene)) bis(2,4- dichlorophenol)	44
II.5. Synthesis of metal ion complexes	44
II.6. Synthesis of metal carbonyl complexes	45
II.6.1. Synthesis of $[Cr_2(CO)_2(L)_2]$, $[Mo_2O_4(L)_2]$ and $[W_2O_4(L)_2]$ complexes	45
II.6.2. Synthesis of [Mo ₂ O ₅ (CO)L].H ₂ O complex	46
II.7. Metal ion uptake study	47
II.8. Photocatalytic dye degradation	48
II.9. Pharmacological evolution	49
II.9.1. Microbiological investigation	49
II.9.2. Anticancer activities	50
CHAPTER (III) RESULTS & DISCUSSION PART (1)	
III.1. Metal ion complexes	51
III.1. Spectroscopic studies of ligand and its	51
metal ion complexes	

III.1.1. Mass spectral studies	53
III.1.2. Conductivity measurements	53
III.1.3. Infrared spectra studies	56
III.1.4. ¹ H NMR spectroscopy	60
III.1.5. Magnetic measurements	60
III.1.6. Electronic spectra	62
III.1.7. Thermogravimetric analysis	64
III.1.7.1. Thermodynamic activation parameters	65
III.1.2. DFT studies	71
III.1.2.1. Optimization of the structures	71
III.1.2.2. Molecular electrostatic potential (MEP) of ligand	f 78
III.1.2.3. Mulliken atomic charge	79
III.1.2.4. Frontier molecular orbitals and global quantities	79
PART (II)	
III.2. Metal carbonyl complexes	86
*	
III.2.1. Spectroscopic studies of ligand and its metal carbonyl complexes	86
III.2.1. Spectroscopic studies of ligand and its	86

III.2.1.3. ¹ H NMR spectroscopy	94
III.2.1.4. Magnetic measurements	97
III.2.1.5. Electronic spectra	97
III.2.1.6. Thermogravimetric analysis	99
III.2.1.6.1. Kinetic Data	102
PART (III)	
III.3. Applications	
III.3.1. Applications of the metal ion complexes	112
III.3.1.1. Fluorescence spectra studies	112
III.3.1.2. Optical properties	114
III.3.1.3. Photocatalytic degradation of methylene blue	116
III.3.1.3.1. Effect of time and concentration of MB	116
III.3.1.3.2. Effect of time and temperature	116
III.3.1.3.3. Effect of type of catalyst	117
III.3.1.3.4. Mechanism	144
III.3.1.4. Metal uptake	145
III.3.1.5. Antimicrobial activities	149
III.3.1.6. Cytotoxicity activity	153
III.3.2. Applications of the metal carbonyl complexes	157
III.3.2.1. Fluorescence studies	157
III.3.2.2. Optical properties	157
Summary	161

References	168
Arabic summary	Í

LIST OF SCHEMS <u>CHAPTER (II)</u> <u>EXPERIMENTAL</u>

Scheme II.1. Synthesis of ligand (H ₂ L)	45
Scheme II.2. Synthetic route of $[Cr_2(CO)_2L_2]$,	
$[Mo_2O_4(L)_2] \ and \ [W_2O_4(L)_2] \ complexes$	46
Scheme II.3. Synthetic route of [Mo ₂ O ₅ (CO)L).H ₂ O	
complex	47

CHAPTER (III) RESULTS & DISCUSSION

Scheme III.1. The schematic fragmentations pathway	
for the synthesized ligand (H ₂ L) where the values	
under each fragment denoted as calculated [found;	
intensity]	55
Scheme III.2. Optimized structures for Ligand (H ₂ L)	
and its Co(II) complex	72
Scheme III.3. Optimized structures for Ni(II) and	
Cu(II) complexes	73
Scheme III.4. The frontier molecular orbitals of the	
ligand (H ₂ L) and its Co(II) complex	81
Scheme III.5. The frontier molecular orbitals of the	
Ni(II) and Cu(II) complexes	82

List of contents

Scheme III.6. The proposed structure of the ligand	
(H_2L)	84
Scheme III.7. The proposed structure of	
$[Cu_2(H_2L)_2Cl_4].3H_2O\ complex\$	84
Scheme III.8. The proposed structure of	
$[Co_2(H_2L)(H_2O)_4Cl_4]\ complex$	85
Scheme III.9. The proposed structure of	
$[Ni_2(H_2L)(H_2O)_4Cl_4] \ complex \$	85
Scheme III.10. The proposed structure of	
$[Cr_2(CO)_2(L)_2] \ complex$	110
Scheme III.11 . The proposed structures of $[Mo_2O_4L_2]$	
and $[W_2O_4L_2]$ complexes	111
Scheme III.12. The proposed structure of	
[Mo ₂ O ₅ (CO)L].H ₂ O complex	111
Scheme III.13. The schematic showing the mechanism	
for degradation of MB by using complexes as a	
catalyst	145