

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Single Lung Ventilation versus Two Lung Ventilation in Video Assisted Thoracoscopic Lung Surgeries

Thesis

Submitted for Partial Fulfillment of MSc Degree in Anesthesiology, Intensive Care and Pain Management

By

Esraa Abd El-Latif Mohamed Shawky Abd El-Hameed Arafa

 $M.B.,\,B.CH$

Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Omar Mohamed Taha Abdallah El-Safty

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Salwa Omar El-Khattab Amin Mohamed

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mohamed Osman Awad Taeimah

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, all gratitude is due to **ALLAH**, almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really, I can hardly find the words to express my gratitude to **Prof. Dr. Omar Mohamed Taha Abdallah El-Safty;** Professor of Anesthesiology, Intensive Care and Pain Management, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would also like to express my sincere appreciation and gratitude to **Dr. Salwa Omar El-Khattab Amin Mohamed;**Assistant professor of Anesthesiology; Intensive Care and Pain Management, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I would like to direct my special thanks to **Mohamed Osman Awad Taeimah**; Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for the continuous support and guidance that he offered to me step by step till the end of this thesis.

I dedicate this work to my family and friends; because without their ongoing, sincere support and encouragement, the whole work would not have ever been completed.

Esraa Abd EL-Latif

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy	5
Physiology of Respiratory System	13
Ventilation	19
Surgical Thoracoscopy	34
One Lung Ventilation	42
Double-Lumen Tubes	80
Patients and Methods	88
Results	95
Discussion	112
Summary	119
Conclusion	121
References	122
Arabic Summary	

List of Abbreviations

Abb.	Full term
AECsAir	way exchange catheters
ALI Acu	
ARDS Acu	ite respiratory distress syndrome
	erican Society of Anesthesiologists
CNS Cer	ntral nervous system
CO2 Car	bon dioxide
COPD Chi	conic obstructive pulmonary disease
	atinuous positive airway pressure
DLTs Dou	ible-lumen endobronchial tubes
EBTs End	lobronchial tubes
ETT End	lotracheal tube
FEV1 For	ced expiratory volume
Fio2 Fra	ction of inspired oxygen
FOBFib	re-optic bronchoscope
FRC Fur	nctional residual capacity
Hb Her	noglobin
HFJVHig	h-frequency jet ventilation
HPV Hyj	poxic pulmonary vasoconstriction
HPV Hyj	poxic pulmonary vasoconstriction
I:E Ins	piratory to expiratory
ICU Inte	ensive care unit
LIPLov	ver inflection point
N ₂ O Nit	rous oxide
NANC Nor	n-adrenergic, non-cholinergic
NO Nit	ric oxide
NO Nit	ric Oxide

List of Abbreviations Cont...

Abb.	Full term
OLV	. One-lung ventilation
	. Pulmonary arterial
PAO2	. Oxygen partial pressure
PCA	. Patient-controlled analgesia
	. Pressure-controlled ventilation
PE	. Pulmonary embolism
PEEP	. Positive end-expiratory pressure
PPCs	. Postoperative pulmonary complications
PPV	. Positive pressure ventilation
PV	. Pulmonary venous
PvO2	. Venous oxygen tension
PVR	. Pulmonary vascular resistance
RUL	. Right upper lobe
RV/TLC	Right ventricular/total lung capacity
SAR	. Slowly adapting stretch receptors
TIVA	. Total intravenous anesthesia
TLV	. Two-lung ventilation
V/Q	. Ventilation to perfusion
VATS	. Video assisted thoracic surgery
VCV	. Volume control ventilation
VIP	. Vasoactive intestinal peptide
VT	. Tidal volume

List of Tables

Table No.	Title	Page No.
Table (1):	Agents or interventions that mod pulmonary vasoconstrictor resp	oonse to
Table (2):	Comparison between VATS compin relation to open thoracotomy	
Table (3):	Indications for video thoracoscopic surgery	
Table (4):	Management of hypoxia during V	ATS40
Table (5):	Approach to hypoxemia during OI	LV 58
Table (6):	Risk factors for acute lung inju	-
Table (7):	Summary of ventilatory strategie OLV	•
Table (8):	Advantages and disadvantages of	DLT 81
Table (9):	Descriptive for demographic and data of the studied patients	O
Table (10):	Comparison between single and ventilation among demographic da	
Table (11):	Comparison between single and ventilation among surgical data	•
Table (12):	Comparison between single and ventilation among arterial O2 sintra-operative follow-up.	aturation
Table (13):	Comparison between single and ventilation among average intra- arterial O2 saturation follow-up	operative
Table (14):	Comparison between single and ventilation among resistant hyp surgeon satisfaction	oxia and

List of Tables Cont...

Table No.	Title Page 1	No.
Table (15):	Comparison between single and two lung ventilation among arterial O2 saturation post-operative follow-up	108
Table (16):	Comparison between single and two lung ventilation among intra-operative and post-operative complications	110

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of pleura	6
Figure (2):	Lung lobes	
Figure (3):	Tracheobronchial tree	
Figure (4):	Mechanism of respiration.	
Figure (5):	Control of respiration	
Figure (6):	Pulmonary blood flow distributed to alveolar pressure accord West zones.	bution ling to
Figure (7):	Positional changes of ventilation relation to pressure volume curve	
Figure (8):	Effect of PEEP and CPAP on oxygeduring OLV	
Figure (9):	Mechanism of acute lung injury	60
Figure (10):	Effect of lung recruitment on imposygenation during OLV	•
Figure (11):	Fibro optic view of tracheal and bro carina with left sided double lumer in situ	n tube
Figure (12):	Sex distribution of the studied patie	nts96
Figure (13):	ASA classification of the studied pat	
Figure (14):	Surgery type of the studied patients	
Figure (15):	Comparison between single and two ventilation among mean age (years)	o lung
Figure (16):	Comparison between single and two ventilation among sex of the states	tudied
Figure (17):	Comparison between single and two ventilation among ASA classification	•

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (18):	Comparison between single and two ventilation among duration of sur (hrs).	rgery	101
Figure (19):	Comparison between single and two ventilation among type of surgery	_	102
Figure (20):	Comparison between single and two ventilation among arterial O2 satur intra-operative follow-up	ation	104
Figure (21):	Comparison between single and two ventilation among average intra oper oxygen saturation.	ative	106
Figure (22):	Comparison between single and two ventilation among resistant hypoxia.	_	107
Figure (23):	Comparison between single and two ventilation among surgeon satisfaction	_	108
Figure (24):	Comparison between single and two ventilation among arterial O2 satur post-operative follow-up.	ation	109
Figure (25):	Comparison between single and two ventilation among intra-oper complications.	ative	111
Figure (26):	Comparison between single and two ventilation among post-oper complications.	ative	111

INTRODUCTION

Single lung ventilation is a technique commonly used in thoracic anesthesia to make thoracic surgery easier. It is used to create an optimum operative field and to improve surgical exposure. Single lung ventilation can be accomplished using different tools. However, double-lumen tubes are still considered the most popular and reliable choice for single lung ventilation in adult patients (*Brodsky & Lemmens, 2003; Della Rocca et al., 2013*). The use of video-assisted thoracoscopic surgery has become widespread, and the traditional open thoracotomy has been replaced by video-assisted thoracoscopic surgeries due to its minimal invasiveness and associated low morbidity (*Torresini et al., 2001*). No single method of lung isolation can be considered to be the best. The use varies according to the situation and has to be decided on 'as and when' basis. However, Alsharani and Eldawlatly in 2014 described an algorithm for this.

Hypoxemia is used to be the primary concern during one lung ventilation. However, hypoxemia has become less frequent due to more effective lung isolation techniques, particularly the routine use of fiberoptic bronchoscopy, and the use of anesthetic agents with little or no detrimental effects on hypoxic pulmonary vasoconstriction. Acute lung injury has replaced hypoxia as the chief concern associated with one lung ventilation (*Lohser*, 2008). Nevertheless, it is not surprising that the rate of hypoxemia during single-lung ventilation is higher than 1.9% which is hypoxemia rate, reported for a general surgical collective (*Morkane et al.*, 2018).

Single lung ventilation creates intrapulmonary shunt that can result in a relevant hypoxemia in up to 10% of the procedures, which could be defined as a decrease in arterial oxygen saturation of the patient blood below 90% while being ventilated with an inspiratory oxygen fraction equal or greater than 0.5 (Karzai & Schwarzkopf, 2009; Campos & Feider, 2018). The treatments of choice are either to re-inflate the operated lung or to raise the inspiratory oxygen fraction of the ventilated lung towards 1.0. However, intra-procedural reinflation of the operated lung impairs the access for the surgeon to the operational field and may reduce the success of surgery, which is the main drawback of two lung ventilation and that makes the single lung ventilation of choice. Alternative or rather supplemental approaches either intermittent positive airway pressure (Russell, 2011) or differential lung ventilation can be applied to the dependent lung (Kremer et al., 2019). Though, excessively the raising of intraoperative inspiratory oxygen fraction with the intention to treat hypoxemia means to replace one evil by another. Oxygen is a powerful vasoconstrictor and the paradoxical situation may arise so that hyperoxia (increased arterial oxygen partial pressure) leads to a reduced oxygen delivery to the vascular beds of various organs, especially of the brain or heart (Brugniaux et al., 2018).

of perioperative oxygen increase stress furthermore caused by the generation of reactive oxygen species and leads to molecular, cell, and organ damage (Roberts &Cios, 2019). However, it has been argued that reactive oxygen species are not bad as a matter of principle but can be