

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AN EXPERT SYSTEM FOR ENHANCED ACCURACY OF COST ESTIMATING IN EPC/TURN-KEY PROJECTS

By

Mahmoud Mohamed Sami Metwalli

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

AN EXPERT SYSTEM FOR ENHANCED ACCURACY OF COST ESTIMATING IN EPC/TURN-KEY PROJECTS

By

Mahmoud Mohamed Sami Metwalli

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Nabil Abdelbadie Yehia

Structural Engineering Department Faculty of Engineering, Cairo University Assoc. Prof. Dr. Atef Abdelmoghny Ragab

Construction Engineering Department
Faculty of Engineering, Misr for Science and
Technology

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

AN EXPERT SYSTEM FOR ENHANCED ACCURACY OF COST ESTIMATING IN EPC/TURN-KEY PROJECTS

By

Mahmoud Mohamed Sami Metwalli

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

> in Structural Engineering

Approved by the Examining Committee

\sim . \sim	r
Prof. Dr. Nabil Abdelbadie Yehia,	Main Advisor
Faculty of engineering – Cairo University	
HON-	
Assoc. Prof. Dr. Atef Abdelmoghny Ragab,	Advisor
Faculty of engineering - Misr University for Science and Tech	nology
Afel. A. Ragalo	- 1
Prof. Dr. Hisham Maged Osman,	Internal Examiner
Faculty of engineering - Cairo University	
allo shell	
Dr. Mohamed Abdellatif Bakry,	External Examiner
Former Head of Planning and Control - Social Fund for Develo	opment

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Engineer: Mahmoud Mohamed Sami Metwalli

Date of Birth: 15 / 08 / 1994 **Nationality:** Egyptian

E-mail: eng.mahmoudsamiii@gmail.com

Phone: 01225496046

Address: Mohandessin, Giza, Egypt

Registration Date: 1 / 10 / 2017 **Awarding Date:** / / 2021

Degree: Master of science **Department:** Structural engineering

Supervisors: Prof. Dr. Nabil Abdelbadie Yehia

Assoc. Prof. Dr. Atef Abdelmoghny Ragab Misr University for Science and Technology

Examiners:

Prof. Dr. Nabil Abdelbadie Yehia (Thesis main advisor)

Assoc. Prof. Dr. Atef Abdelmoghny Ragab (advisor)

Misr University for Science and Technology

Prof. Dr. Hisham Maged Osman (Internal examiner)
Dr. Mohamed Abdellatif Bakry (External examiner)
Former General manager of Planning and Follow-up at

the Social Fund for Development

Title of Thesis: An Expert System For Enhanced Accuracy Of Cost

Estimating In EPC/Turn - Key Projects

Key Words: EPC; Cost; Estimate; Contingency; Fuzzy

Summary:

An expert system based on Fuzzy logic would be developed and used to enhance the cost estimation accuracy in EPC projects. The cost estimation accuracy in EPC projects depends on multiple variables representing the project structure. These variables were classified into 5 categories: tender documents, contract obligations, tender status, and circumstances, known data about the project status and the estimate resources. To analyze the impact of these variables on the cost estimation accuracy, an open structured questionnaire was published, and the most influencing variables were determined, studied, and covered by all the possible scenarios that might be generated. These scenarios would be considered as the rule base of the Fuzzy system describing the basic concept of Fuzzy logic and the relationships between variables. The main objective of this research, which is improving the cost estimate accuracy, will be achieved by modifying the contingency percentage as output from Fuzzy system.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited

them in the references section.

Name: Mahmoud Mohamed Sami	Date://
Signature:	

Acknowledgments

I would like to express my sincere appreciation and gratitude to my supervisors Professor Dr. Nabil Abdelbadie Yehia and Associated Professor Dr. Atef Abdelmoghny Ragab for their precious comments, invaluable guidance, patience, encouragement throughout the preparing of this thesis and their insight that enabled me develop an in-depth understanding of the subject.

Finally, I would like to express my grateful thanks to my parents, my wife, my family and friends for their unlimited love, support, patience, and faith in me.

Table of Contents

Disclaimer	i
Acknowledgments	ii
List of Tables	vi
List of Figures	vii
Abstract	viii
Chapter 1: Introduction	1
1.1 Overview	1
1.2 Problem Statement	1
1.3 Objective & Scope	1
1.4 Methodology	2
1.5 Thesis Organization	2
Chapter 2: Literature review	3
2.1 Introduction	3
2.2 Importance of the cost estimation accuracy	3
2.3 Significance of Cost estimation accuracy on EPC projects	4
2.4 Cost estimate classification matrix for EPC projects	6
2.5 Contingency management and contingency estimation methods for EPC pro	jects7
2.6 Fuzzy set theory	10
2.7 Application of Fuzzy Logic in Construction	11
2.8 Previous studies and related works	12
2.9 Comments on Previous studies	14
Chapter 3: Input variables and the structure of the questionnaire	16
3.1 Introduction	16
3.2 The input variables	16
3.2.1 Category 1: Tender documents	16
3.2.2 Category 2: Contract obligations	18
3.2.3 Category 3: Tender Status and circumstances	20
3.2.4 Category 4: Known data about the Project status	20
3.2.5 Category 5: Estimate Resources	22
3.3 Case studies from actual EPC projects	24

3.3.1 Case Study 1	24
3.3.2 Case Study 2	24
3.4 Questionnaire Survey:	25
3.4.1 Introduction	25
3.4.2 Questionnaire Design	25
3.4.3 The Target participating departments to the questionnaire	25
3.4.4 Questionnaire population and sample size	26
3.4.5 Participants Classification and analysis of the Questionnaire	26
Chapter 4: Research methodology and model development	29
4.1 Introduction	29
4.2 Fuzzy logic technique	29
4.3 The steps of Fuzzy logic interface.	30
4.3.1 Identifying the input variables which will be stored in the fuzzy knowledge base	30
4.3.2 Determining the firing strength (relative weight) of each input variable	32
4.3.3 Selecting the membership functions for each input variable	35
4.3.4 Generating scenarios (decision rules) to convert the fuzzy inputs to fuzzy outputs	38
4.3.5 Aggregating the qualified consequents to produce a crisp output	38
4.3.6 Designing and simulating the fuzzy system using MATLAB fuzzy logic toolbox	45
Chapter 5: Validation	51
5.1 Introduction	51
5.2 First case	51
5.2.1 Known data about the EPC project	51
5.2.2 The project's main input variables	51
5.2.3 Expert system validation	52
5.3 Second case	53
5.3.1 Known data about the EPC project	53
5.3.2 The project's main input variables	53
5.3.3 Expert system validation	53
5.4 Third case	55
5.4.1 Known data about the EPC project	55
5.4.2 The project's main input variables	55
5.4.3 Expert system validation	55
5.5 Fourth case	57

5.5.1 Known data about the EPC project	57
5.5.2 The project's main input variables	57
5.5.3 Expert system validation	57
5.6 Fifth case	59
5.6.1 Known data about the EPC project	59
5.6.2 The project's main input variables	59
5.6.3 Expert system validation	59
Chapter (6): Conclusions and Recommendations	61
6.1 Introduction	61
6.2 Conclusions	61
6.3 Further researches and future development	61
References	63
Appendix (A): Questionnaire Form	67
Appendix (B): Questionnaire responses summary	76

List of Tables

Table 2. 1: AACE Cost Estimate Classification System	6
Table 3. 1: Questionnaire Scale	25
Table 4. 1: Identification of Input Variables	30
Table 4. 2: Input Variables' firing strength	33
Table 4. 3: Membership Functions score	36
Table 4. 4: Fuzzy Logic decision rules	39

List of Figures

Figure 2. 1: EPC Organization Structure	4
Figure 2. 2: Project Budget Build-Up of Cost	8
Figure 2. 3: Block Diagram for Fuzzy Logic Control Process	11
Figure 3. 1: Classification According to Years of Experience	27
Figure 3. 2: Classification According to Job Titles	27
Figure 4. 1: Fuzzification process	30
Figure 4. 2: The duration of FEED verification	46
Figure 4. 3: Existence of nominated vendors	47
Figure 4. 4: Available time for proposal submission	48
Figure 4. 5: Estimation's team experience	49
Figure 4. 6: Changes in contingency	
Figure 5. 1: First application	52
Figure 5. 2: Second application	54
Figure 5. 3: Third application	56
Figure 5. 4: Fourth application	58
Figure 5. 5: Fifth application	

Abstract

Cost estimation in EPC contracts is considered as a major challenge to increase the profitability and reduce the probability of failure due to cost prediction mistakes since the EPC contractor is solely responsible of the project cost, schedule and quality requirements under agreed contract price.

This research effort has a primary objective which is enhancing the cost estimation accuracy of EPC projects by developing a model using Fuzzy logic that facilitate creating a competitive cost estimate and finalize the project within the approved budget without the threat of losing the tender due to submitting higher price than the other bidders.

The cost estimation accuracy in projects under EPC contracts depends on multiple variables representing the EPC project parameters and to develop the expert system these variables were listed and classified into 5 categories: tender documents, contract obligations, tender status and circumstances, known data about the project status and the estimate resources.

To analyze the impact of these variables on the cost estimation accuracy, an open structured questionnaire was published, and the most influencing variables were determined, studied and covered by all the possible scenarios that might be generated.

These scenarios would be considered as the rule base of the Fuzzy system describing the basic concept of Fuzzy logic and the relationships between variables. The main objective of this research, which is improving the cost estimate accuracy, will be achieved by following a selected approach of modifying the contingency percentage as output from Fuzzy system.