

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Mean Platelet Volume (MPV) and Plasma Lactate Level in the Diagnosis and Prognosis of Neonatal Bacteremia

Thesis

Submitted For Partial Fulfillment of Master Degree in Clinical Pathology

By

Yara Raafat Hosny

M.B, B.Ch. Ain Shams University

Under supervision of

Assist.Prof.Dr. Marwa Abd EL-Rasoul EL-Ashry

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Noha Alaa El-Din Mohammed Fahim

Lecturer of Clinical Pathology
Faculty of Medicine, Ain Shams University

Dr. Ghada Ahmed Saleh

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Assist. Prof. Dr. Marwa Abd & Rasoul & Ashry, Assistant Professor of Clinical Pathology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Moha Alaa El-Din**Mohammed Fahim, Lecturer of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ghada Ahmed Saleh**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Yara Raafat Hosny

List of Contents

Title	Page No.
List of Tables	i
ist of Figuresi	
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
▼ Neonatal Sepsis	4
Diagnosis of Neonatal Sepsis	15
Prevention and Control	47
▼ Treatment	48
Materials and Methods	51
Results	67
Discussion	84
Conclusion and Recommendation	94
Summary	95
References	
Arabic Summary	1

List of Tables

Table No.	Title	Page No.
Table (1):	Signs of sepsis and its corresponding	ng score 16
Table (2):	Sofa score for sepsis diagnosis	18
Table (3):	Lower limits of WBCs according gestational age and timing of samp	O
Table (4):	Hematological scoring system	28
Table (5):	Description of personal data amorgroup (positive blood culture)	•
Table (6):	Description of clinical among cas (positive blood culture)	
Table (7):	Description of personal data amon group (negative blood culture)	•
Table (8):	Description of clinical data among group (negative blood culture)	-
Table (9):	Comparison between cases and coregard age, gender and mortality	
Table (10):	Comparison between cases and coregard laboratory data:	
Table (11):	Comparison between early onset onset sepsis cases as regard labora type of organism (blood cultimortality:	tory data, ure) and
Table (12):	Comparison between males, and cases as regard laboratory data organism (blood culture) and morta	females' , type of
Table (13):	Comparison between EOS and LOS as regard lab data, and mortality:	
Table (14):	Comparison between alive, and d as regards laboratory data:	
Table (15):	Comparison between alive and dea as regards laboratory data:	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	Logistic Regression for independent factors associated positive culture cases:	with gram-
Table (17):	Logistic Regression for independent factors associated Negative blood culture cases:	with Gram

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Bactec blood culture bottles	21
Figure (2):	Bactec blood culture technique	21
Figure (3):	Mechanism of action and biological CRP	
Figure (4):	EOS percent Vs. LOS percent amon and controls	•
Figure (5):	Mean MPV, and Lactate between ca controls	
Figure (6):	Mean CRP between cases and contro	ols75
Figure (7):	Mean CRP between EOS, and LOS	78
Figure (8):	Mean MPV between EOS, and controls	
Figure (9):	Mean lactate between alive and dead	d cases 80

List of Abbreviations

Abb.	Full term
Apo	Anolinoprotein
_	Acute phase reactants
	Blood lactic acid
	Complete blood picture
	Coagulase negative staphylococcus
	C reactive protein
	Disseminated intravascular coagulopathy
	Early onset sepsis
	Fluorescence in situ hybridization
	Group B-streptococcus
	Granulocyte-Colony Stimulating Factors
	Guanosine triphosphate
<i>HDL-C</i>	High-density lipoprotein cholesterol
HSS	Hematological system scoring
ICAM-1	Circulating intercellular adhesion molecule-1
<i>IVIG</i>	Intravenous immunoglobulin
LOS	Late onset sepsis
LTA	Anti-lipoteichoic acid
MALDI TOF MS	$. Matrix-assisted laser desorption \prime ionization time- \\ of flight mass spectrometry$
<i>MBL</i>	Mannose binding protein
MODS	Multi organ dysfuction syndrome
<i>MPV</i>	Mean platelet volume
MRSA	Methicillin resistant staphylococcus aureus
<i>NEC</i>	Necrotizing enterocolitis
<i>NICU</i>	Neonatal Intensive Care Unit
PCR	Polymerase chain reaction
<i>PCT</i>	Procal citon in
<i>PSP</i>	Panceartic stone protein

List of Abbreviations (Cont...)

Abb.	Full term
PTX3	Pentraxin 3
	Quick sequential organ failure assessment
<i>SAA</i>	Serum amyloid-A
SIRS	Systemic inflammatory response syndrome
SOFA	Sequential organ failure assessment
<i>VLBW</i>	Very low birth weight
WHO	World health organization

Introduction

eonatal sepsis is a clinical syndrome characterized by signs and symptoms of infection with or without bacteremia. It is caused by various organisms invading the blood stream, which may be, bacterial, viral, fungal, or protozoal, whereas in bacterial sepsis, bacteremia is a cardinal feature (*Karne et al.*, 2017).

Globally, sepsis is considered to be the major cause of high morbidity and mortality among neonates, despite the efforts done in health care units. Around 40% of under –five deaths worldwide occur in the neonatal period, owing to 3.1 million newborn deaths annually (*Shehab El-Din et al.*, 2015).

Unfortunately, the symptoms and signs of neonatal sepsis are subtle and non-specific, so rapid diagnosis and management become a challenge every health care worker faces (*Bhat*, 2017). Blood culture and sepsis screening tests (elevated CRP, elevated total leukocytic count, and thrombocytopenia) are the most common used methods routinely. Although blood culture is the gold standard method for diagnosis of bacterial sepsis, at least 24 hours are needed for preliminary diagnosis. So, a rapid and reliable diagnostic tests are needed (*Singhi et al.*, 2009; *Hofer et al.*, 2012).

Thrombocytopenia is a common hematological abnormality in neonates with bacteremia. The auto-analyzers readily provide platelet indices along with platelet counts without any additional cost. However, these indices are not given proper attention. One of the important platelet indices available for clinical utility is the mean platelet volume (MPV), which is defined by the arithmetic mean of platelets (Bhat, 2017).

Lactic acid is the metabolite of the anaerobic oxidation of sugar (glycolysis) and is generated by many organs as the brain, skeletal muscles and red blood cells. There have been a few studies conducted on the influence of blood lactic acid detection on neonatal bacterial sepsis diagnosis (Jia el al., 2017).

AIM OF THE WORK

o determine the role of mean platelet volume (MPV) and plasma lactate level in the diagnosis and prognosis of neonatal bacterial sepsis.