

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Biochemical and Structural Magnetic Resonance Imaging in Chronic Stroke and the Relationship with Upper Extremity Motor Function

Ehesis

Submitted for Partial Fulfillment of MD Degree In Neurology

By

Dalia Maher Samy

MSc. Neuropsychiatry

Under Supervision of

Prof. Dr. Mohamed Mahmoud Mostafa

Professor of Neurology Faculty of Medicine - Ain Shams University

Prof. Dr. Eman Mahmoud Awad

Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Hazzou

Assistant Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Tougan Taha Abdel Aziz

Assistant Professor of Diagnostic Radiology Faculty of Medicine - Ain Shams University

Dr. Mohamed Khaled Ahmed Elewa

Assistant Professor of Neurology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

I would like to express my deep gratitude and sincere appreciation to **Prof. Dr. Mohamed Mahmoud Mostafa**, Professor of Neurology, Ain Shams University for his sustained support, continued encouragement and for his precious time and effort that made this thesis possible. It was great honor to me to do this thesis under his supervision.

I owe special feeling of gratitude to **Prof. Dr. Eman Mahmoud Awad**, Professor of Neurology, Ain Shams University for her great help, close supervision, wise opinions, guidance and her continuous encouragement and for her precious effort. Without her support, this work would not have been completed.

My deep appreciation to **Dr. Ahmed Mohamed Hazzou**, Assistant Professor of Neurology, Ain Shams University for his valuable instructions, unlimited help and great deal of support, his endless patience with me and for his experienced guidance and helpful suggestions that make the completion of this work possible.

My deep appreciation to **Dr. Jougan Jaha Abdel Aziz**, Assistant Professor of diagnostic radiology, Ain Shams University for her valuable instructions, unlimited help and great deal of support, her endless patience with me and for her experienced guidance and helpful suggestions that make the completion of this work possible.

Also, my profound gratitude to **Dr. Mohamed Khaled Ahmed Elewa**, Assistant Professor of Neurology, Ain Shams University, for his great care and support.

Last but not least, I wish to express my love and respect to my lovely husband, my son and my family, for their endless love and care, for their valuable emotional support and continuous encouragement which brought the best out of me. I owe them all every achievement throughout my life.

Contents

Subject	Page
List of Abbreviations	I
List of Figures	IV
List of Tables	V <u>I</u>
Introduction	1
Aim of the Work	4
- Chapter (1): Recovery after Stroke	5
- Chapter (2): Upper Extremity Impairment and	
Recovery after Stroke	25
- Chapter (3): Structural and Biochemical Chang	
after Stroke	37
Subjects and Methods	59
Results	66
Discussion	
Conclusion	116
Recommendations	117
Summary	118
References	
Appendices	149
Arabic Summary	

List of Abbreviations

Abb.	Full term
1H-MRS	Proton magnetic resonance spectroscopy
AMPA	α-amino-3-hydroxyl-5-methyl-4-isoxazole-
	propionate
BBB	Blood brain barrier
BDNF	Brain derived neurotrophic factor
Cho	Choline
CNS	Central nervous system
CR	Completely recovered
Cr	Creatine and phosphocreatine
CSF	Cerebrospinal fluid
DG	Dentate gyrus
DWM	Deepwhite matter
EAATs	Excitatory amino acid transporters
FA	Fractional anisotropy
FLAIR	Fluid-Attenuated Inversion Recovery
FMA	Fugl Meyer Assessment
FMA- UE	Fugl Meyer Assessment - upper-extremity
fMRI	Functional magnetic resonance imaging
GABA	Gamma amino butyric acid
GLAST	Glutamate-aspartate transporter
GLN	Glutamine
GLT1	Glutamate transporter 1

Abbreviations

Abb.	Full term
GLU	Glutamate
Glx	Glutamate and glutamine
GMV	Grey matter volume
IQR	Interquartile range
Lip	Lipids
LTP	Long Term Potentiation
M1	Primary motor cortex
MCA	Middle cerebral artery
MFV	Mean Flow velocity
mI	Myo-inositol
ML	Mobile lipids
Mm	Millimeters
MRA	Magnetic resonance angiography
mRS	Modified Rankin Scale
NAA	N-acetylaspartate
NAAG	Neuropeptide N-acetylaspartylglutamate
NIH	National Institutes of Health
NIHSS	National Institute of Health Stroke Scale
NPCs	Neural progenitor cells
NSCs	Neural stem cells
PACS	Picture Archiving and Communication System
PCD	Programmed cell death
PET	Positron emission tomography
PMd	Dorsal premotor cortex

Tist of Abbreviations

Abb.	Full term
PR	Partial motor recovery
PVWM	Periventricular white matter
RMS	Rostral migratory stream
SD	Standard deviation
SGZ	Subgranular zone
SMA	Supplementary motor area
SVZ	Subventricular zone
TCA	Tricarboxylicacid
TE	Echo time
tNAA	Total N-acetylaspartate
TR	Repitition time
UE	Upper-extremity
WMFT	Wolf motor function test

List of Figures

No	Figure	Page
1	Timeline of stroke-induced degeneration, dysfunction and adaptive plasticity	8
2	Diaschisis at rest: a focal lesion induces a remote reduction of metabolism	11
3	Functional diaschisis normal brain activations during a selected task may be altered, either increased or decreased after a lesion	12
4	Connectional diaschisis: distant strengths and directions of connections in a selected network may be increased or decreased	13
5	Connectomal diaschisis a lesion of the connectome induces widespread changes in brain network organization including decrease or increase in connectivity	14
6	Peri-infarct cortex exhibits both hypoexcitability and increased excitability responses after stroke	20
7	Sequential progression of motor recovery as described by Twitchell and Brunstrumm	30
8	3T PRESS brain spectra recorded from a 2-year-old boy with TE 135 ms	43
9	Precentralgyrus which represent the primary	63

Tist of Figures

No	Figure	Page
	motor cortex (m1) of hand area	
10	Pie chart for sex	66
11	Distribution of the risk factors among all cases	67
12	MRI brain show right capsular infarction	86
13	Single voxel MRS on the right hand area	87
14	Single voxel MRS on the left hand area	87
15	MRI brain shows right frontal infarction	88
16	Single voxel 1H-MRS on the left hand area	89
17	Single voxel 1H-MRS on the right hand area	89
18	MRI brain shows left pontine infarction	90
19	Single voxel 1H-MRS on the left hand area	91
20	Single voxel 1H-MRS on the right hand area	91
21	MRI brain shows left pontine infarction	92
22	Single voxel 1H-MRS on the left hand area	93
23	Single voxel 1H-MRS on the right hand area	93
24	MRI brain shows left frontal infarction	94
25	Single voxel 1H-MRS on the left hand area	95
26	Single voxel 1H-MRS on the right hand area	95

Agist of Figures

No	Figure	Page
27	MRI brain shows right parietal infarction	96
28	Single voxel 1H-MRS on the left hand area	97
29	Single voxel 1H-MRS on the right hand area	97
30	MRI brain shows left pontine infarction	98
31	Single voxel 1H-MRS on the left hand area	99
32	Single voxel 1H-MRS on the right hand area	99
33	MRI brain shows left periventricular infarction	100
34	Single voxel 1H-MRS on the left hand area	101
35	Single voxel 1H-MRS on the right hand area	101
36	MRI brain shows left frontoparietal infarction	102
37	Single voxel 1H-MRS on the left hand area	103
38	Single voxel 1H-MRS on the right hand area	103
39	MRI brain shows left pontine infarction	104
40	Single voxel 1H-MRS on the left hand area	105
41	Single voxel 1H-MRS on the right hand area	105

Tist of Tables

List of Tables

No	Table	Page
1	The principal metabolites studied in 1H-MRS and their biological significances	52
2	Age and sex characteristics of all cases	66
3	Distribution of the risk factors of all cases	67
4	Clinical presentations of all patients	68
5	MRI brain after more than 6 Months	69
6	Fazekas score	69
7	Cortical thickness and metabolite ratios data of all patients	70
8	Time from onset	71
9	UE motor function and mRS	72
10	mRS score	72
11	Comparison of age and gender between the two study groups	73
12	Comparison of risk factors between the two study groups	74
13	Clinical presentations of the two groups	74
14	Radiological data between the two groups	75
15	Comparison between ipsilesional and contralesional cortical thickness and metabolite ratios in improved group	77