

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A Comparative Study of Using Ondansetron with Dexamethasone or Ondansetron with Haloperidol in Prophylaxis Against Post-Operative Nausea and Vomiting after Elective Laparoscopic Abdominal Surgeries

Thesis

Submitted for Partial Fulfillment of MSc Degree in Anesthesiology, Intensive Care and Pain Management

By

Ayat Mohamed Hisham Elshaer
M.B.B.Ch., Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Ismail Elsaidi

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Heba Bahaa Fldin FlSerwi

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mohamed Mohamed Kamal

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2021

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Ismail Elsaidi,** Prof. of Anesthesia, Intensive Care and Pain Management - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Heba Bahaa Eldin ElSerwi**, Prof. of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Mohamed Kamal,** Lecturer of Anesthesia, Intensive
Care and Pain Management, Faculty of Medicine, Ain
Shams University, for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ayat Mohamed Hisham Elshaer

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	
Introduction	1
Aim of the Work	3
Review of Literature	
Post-Operative Nausea and Vomiting	g4
Pharmacological Control of PONV	16
Patients and Methods	33
Results	41
Discussion	51
Summary	56
Conclusion	58
References	59
Arabic Summary	

Tist of Tables

Table no.	Subject of table	page
Table (1)	Half-lives and receptor binding affinity of 5HT3	23
	antagonists	
Table (2)	Pharmacokinetics of dexamethasone	29
Table (3)	fivepoint observer's assessment of	39
	alertness/sedation (OAA/S) scale	
	Statistics Tables	
Table (1)	Demographic data	41
Table (2)	Intraoperative data	42
Table (6)	post-operative pain score	43
Table (7)	post-operative sedation score	44
Table (8)	incidence of nausea	45
Table (3)	incidence of vomiting	46
Table (10)	Need for antiemetic rescue medication	48
Table (11)	complete response	49
Table (12)	Incidence of side effects of used medications	50
Table (13)	patient satisfaction scores	50

List of Figures

Figure no.	Subject of Figure	page
Fig (1)	anatomical relationship of vomiting centre in	5
	CNS	
Fig (2)	receptor relationship of chemoreceptor trigger	7
	zone	
Fig (3)	key events of vomiting act	9
Fig (4)	5-HT receptor subtypes	20
Fig (5)	3-D structure of 5HT-3 receptor	21
Fig (6)	chemical structure of 5HT3 antagonists	22
Fig (7)	3D chemical structure of ondansetron	24
Fig (8)	Chemical formula of dexamethasone	27
Fig (9)	The visual analog scale	38
	Statistical Charts	•
Fig (10)	Demographic data	41
Fig (11)	Intraoperative monitoring	42
Fig (12)	Incidence of nausea	47
Fig (13)	Incidence of vomiting	47
Fig (14)	Number of patients needing antiemetic rescue	48
Fig (15)	percentage of patients with Complete response	49
Fig (16)	Patient satisfaction scores	50

Introduction

Laparoscopic surgery is associated with a remarkably high risk of post-operative nausea and vomiting. In addition to basic factors related to type of patient, anesthesia and intensity of post-operative pain, the reasons for this high rate of PONV include mechanical factors (such as pressure on the stomach and gut caused by the pneumoperitoneum), neural factors (such as vagal reflexes elicited by irritation of parasympathetic nerve endings in the abdomen), and chemical factors (which include speculative considerations regarding a possible influence of CO₂ on PONV) (*Ku and Ong, 2003*).

Postoperative nausea and vomiting are usually self-limiting but if persistent or severe, can cause medical complications such as dehydration, electrolyte imbalance and delay in patient's discharge. The overall incidence of PONV, a determinant of patient outcome and satisfaction, has been reported to vary from 10% to 79% (*Gan et al.,2003*).

Antiemetic medications such as droperidol, promethazine, dexamethasone, metoclopramide and ondansetron have been studied for their efficacy in preventing PONV. Failure of monotherapy with the mentioned agents has been reported to be significant, and a combination of two antiemetic drugs, with different sites of action, has been suggested to provide a higher efficacy with less adverse effects (*Kranke and Eberhart*, 2011).

Haloperidol, a butyrophenone, exerts its antiemetic action through direct dopaminergic (D_2 receptors) inhibition in the chemoreceptor trigger zone and the solitary tract nucleus (*White*, 2002). Ondansetron is a selective serotonin receptor

antagonist (5-HT₃ receptors) with both central (chemoreceptor trigger zone and solitary tract nucleus) and peripheral (stomach and small bowel) actions (*Grecu et al.*, 2008). Dexamethasone acts on glucocorticoid receptors in the nucleus of solitary tract and area postrema. Also, it acts by central inhibition of prostaglandin synthesis, reduction of central serotonin activity and by its anti-inflammatory effect that may reduce the inflammation triggered by afferent stimulation of parasympathetic nervous system to the vomiting center (*Tzeng et al.*, 2000).

Combining haloperidol and ondansetron generally improves efficacy, although it may have only a weak benefit or no benefit at all. Ondansetron is thought to suppress nausea less effectively than vomiting and adding droperidol to ondansetron may reduce nausea (*White et al.*, 2005).

Conversely dexamethasone with ondansetron is an attractive combination because ondansetron is most effective against early vomiting whereas dexamethasone is effective against both early and late (2–24 h) nausea and vomiting; its late efficacy being pronounced (*Henzi et al.*, 2000; *Tramer*, 2001).